IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i6p2522-d1359688.html
   My bibliography  Save this article

Short-Term Load Forecasting Method for Industrial Buildings Based on Signal Decomposition and Composite Prediction Model

Author

Listed:
  • Wenbo Zhao

    (School of International, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Ling Fan

    (School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China)

Abstract

Accurately predicting the cold load of industrial buildings is a crucial step in establishing an energy consumption management system for industrial constructions, which plays a significant role in advancing sustainable development. However, due to diverse influencing factors and the complex nonlinear patterns exhibited by cold load data in industrial buildings, predicting these loads poses significant challenges. This study proposes a hybrid prediction approach combining the Improved Snake Optimization Algorithm (ISOA), Variational Mode Decomposition (VMD), random forest (RF), and BiLSTM-attention. Initially, the ISOA optimizes the parameters of the VMD method, obtaining the best decomposition results for cold load data. Subsequently, RF is employed to predict components with higher frequencies, while BiLSTM-attention is utilized for components with lower frequencies. The final cold load prediction results are obtained by combining these predictions. The proposed method is validated using actual cold load data from an industrial building, and experimental results demonstrate its excellent predictive performance, making it more suitable for cold load prediction in industrial constructions compared to traditional methods. By enhancing the accuracy of cold load predictions. This approach not only improves the energy efficiency of industrial buildings but also promotes the reduction in energy consumption and carbon emissions, thus contributing to the sustainable development of the industrial sector.

Suggested Citation

  • Wenbo Zhao & Ling Fan, 2024. "Short-Term Load Forecasting Method for Industrial Buildings Based on Signal Decomposition and Composite Prediction Model," Sustainability, MDPI, vol. 16(6), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2522-:d:1359688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/6/2522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/6/2522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kong, Meng & Dong, Bing & Zhang, Rongpeng & O'Neill, Zheng, 2022. "HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study," Applied Energy, Elsevier, vol. 306(PA).
    2. Gopila, M. & Suresh, G. & Prasad, D., 2023. "Random decision forest (RDF) and crystal structure algorithm (CryStAl) for uncertainty consideration of RES & load demands with optimal design of hybrid CCHP systems," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giulia Lamberti & Francesco Leccese & Giacomo Salvadori, 2024. "Analysis of the Interplay between Indoor Air Quality and Thermal Comfort in University Classrooms for Enhanced HVAC Control," Energies, MDPI, vol. 17(20), pages 1-22, October.
    2. Wang, Xuezheng & Dong, Bing, 2024. "Long-term experimental evaluation and comparison of advanced controls for HVAC systems," Applied Energy, Elsevier, vol. 371(C).
    3. Mahmud, Arafat & Dhrubo, Ehsan Ahmed & Ahmed, S. Shahnawaz & Chowdhury, Abdul Hasib & Hossain, Md. Farhad & Rahman, Hamidur & Masood, Nahid-Al, 2022. "Energy conservation for existing cooling and lighting loads," Energy, Elsevier, vol. 255(C).
    4. Pang, Zhihong & O'Neill, Zheng & Chen, Yan & Zhang, Jian & Cheng, Hwakong & Dong, Bing, 2023. "Adopting occupancy-based HVAC controls in commercial building energy codes: Analysis of cost-effectiveness and decarbonization potential," Applied Energy, Elsevier, vol. 349(C).
    5. Dong, Lianxin & Wu, Qing & Hong, Juhua & Wang, Zhihua & Fan, Shuai & He, Guangyu, 2023. "An adaptive decentralized regulation strategy for the cluster with massive inverter air conditionings," Applied Energy, Elsevier, vol. 330(PA).
    6. Wang, Huan & Liang, Chenjiyu & Wang, Guijin & Li, Xianting, 2024. "Energy-saving potential of fresh air management using camera-based indoor occupancy positioning system in public open space," Applied Energy, Elsevier, vol. 356(C).
    7. Wu, Yeyu & Jiang, Haihua & Chen, Weiming & Fan, Junhui & Cao, Bin, 2024. "Overall and local environmental collaborative control based on personal comfort model and personal comfort system," Applied Energy, Elsevier, vol. 371(C).
    8. Antonella Yaacoub & Moez Esseghir & Leila Merghem-Boulahia, 2023. "A Review of Different Methodologies to Study Occupant Comfort and Energy Consumption," Energies, MDPI, vol. 16(4), pages 1-18, February.
    9. Yin, Peng & Xie, Jingchao & Ji, Ying & Liu, Jiaping & Hou, Qixian & Zhao, Shanshan & Jing, Pengfei, 2023. "Winter indoor thermal environment and heating demand of low-quality centrally heated houses in cold climates," Applied Energy, Elsevier, vol. 331(C).
    10. Zhang, Wuxia & Wu, Yupeng & Calautit, John Kaiser, 2022. "A review on occupancy prediction through machine learning for enhancing energy efficiency, air quality and thermal comfort in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Guanjing Lin & Armando Casillas & Maggie Sheng & Jessica Granderson, 2023. "Performance Evaluation of an Occupancy-Based HVAC Control System in an Office Building," Energies, MDPI, vol. 16(20), pages 1-21, October.
    12. Li, Chunxiao & Cui, Can & Li, Ming, 2023. "A proactive 2-stage indoor CO2-based demand-controlled ventilation method considering control performance and energy efficiency," Applied Energy, Elsevier, vol. 329(C).
    13. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Artal-Sevil, Jesús Sergio & García-Paricio, Eduardo, 2024. "Design of small-scale hybrid energy systems taking into account generation and demand uncertainties," Renewable Energy, Elsevier, vol. 227(C).
    14. Jiang, Zixin & Deng, Zhipeng & Wang, Xuezheng & Dong, Bing, 2023. "PANDEMIC: Occupancy driven predictive ventilation control to minimize energy consumption and infection risk," Applied Energy, Elsevier, vol. 334(C).
    15. Yoorae Noh & Shahryar Jafarinejad & Prashant Anand, 2024. "A Review on Harnessing Renewable Energy Synergies for Achieving Urban Net-Zero Energy Buildings: Technologies, Performance Evaluation, Policies, Challenges, and Future Direction," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
    16. Xu, Xiaoxiao & Yu, Hao & Sun, Qiuwen & Tam, Vivian W.Y., 2023. "A critical review of occupant energy consumption behavior in buildings: How we got here, where we are, and where we are headed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    17. Li, Han & Sang, Tong & Kong, Xiangfei & Zheng, Wandong & Wang, Zhaoying & Li, Jinchao & Wang, Leilei, 2023. "Performance analysis of interactive cascade ventilation combined with solar energy for the epidemic prevention and control," Applied Energy, Elsevier, vol. 349(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2522-:d:1359688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.