IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v334y2023ics0306261923000405.html
   My bibliography  Save this article

PANDEMIC: Occupancy driven predictive ventilation control to minimize energy consumption and infection risk

Author

Listed:
  • Jiang, Zixin
  • Deng, Zhipeng
  • Wang, Xuezheng
  • Dong, Bing

Abstract

During the SARS-CoV-2 (COVID-19) pandemic, governments around the world have formulated policies requiring ventilation systems to operate at a higher outdoor fresh air flow rate for a sufficient time, which has led to a sharp increase in building energy consumption. Therefore, it is necessary to identify an energy-efficient ventilation strategy to reduce the risk of infection. In this study, we developed an occupant-number-based model predictive control (OBMPC) algorithm for building ventilation systems. First, we collected the occupancy and Heating, ventilation, and air conditioning system (HVAC) data from March to July 2021. Then, four different models (Auto regression moving average-based multilayer perceptron (ARMA_MLP), Recurrent neural networks (RNN), Long short-term memory networks (LSTM), and Nonhomogeneous Markov with change points detection (NH_Markov)) were used to predict the number of room occupants from 15 min to 24 h ahead with an interval output. We found that each model could predict the number of occupants with 85 % accuracy using a one-person offset. The accuracy of 15 min of the ahead prediction could reach 95 % with a one-person offset, but none of them could track abrupt changes. The occupancy prediction results were used to calculate the ventilation demand using the Wells-Riley equation, and the upper bound can maintain an infection risk lower than 2 % for 93 % of the day. This OBMPC model could reduce the coil load by 52.44 % and shift the peak load by 3 h up to 5 kW compared with 24 × 7 h full outdoor air (OA) system when people wear masks in the space. The occupancy prediction uncertainty could cause a 9 % to 26 % difference in demand ventilation, a 0.3 °C to 2.4 °C difference in zone temperature, a 28.5 % to 44.5 % difference in outdoor airflow rate, and a 10.7 % to 28.2 % difference in coil load.

Suggested Citation

  • Jiang, Zixin & Deng, Zhipeng & Wang, Xuezheng & Dong, Bing, 2023. "PANDEMIC: Occupancy driven predictive ventilation control to minimize energy consumption and infection risk," Applied Energy, Elsevier, vol. 334(C).
  • Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000405
    DOI: 10.1016/j.apenergy.2023.120676
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923000405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120676?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2021. "Model predictive control for integrated control of air-conditioning and mechanical ventilation, lighting and shading systems," Applied Energy, Elsevier, vol. 297(C).
    2. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    3. Peng, Yuzhen & Rysanek, Adam & Nagy, Zoltán & Schlüter, Arno, 2018. "Using machine learning techniques for occupancy-prediction-based cooling control in office buildings," Applied Energy, Elsevier, vol. 211(C), pages 1343-1358.
    4. Jin Dong & Christopher Winstead & James Nutaro & Teja Kuruganti, 2018. "Occupancy-Based HVAC Control with Short-Term Occupancy Prediction Algorithms for Energy-Efficient Buildings," Energies, MDPI, vol. 11(9), pages 1-20, September.
    5. Li, Wenzhuo & Wang, Shengwei, 2020. "A multi-agent based distributed approach for optimal control of multi-zone ventilation systems considering indoor air quality and energy use," Applied Energy, Elsevier, vol. 275(C).
    6. Kong, Meng & Dong, Bing & Zhang, Rongpeng & O'Neill, Zheng, 2022. "HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study," Applied Energy, Elsevier, vol. 306(PA).
    7. Li, Bingxu & Wu, Bingjie & Peng, Yelun & Cai, Wenjian, 2022. "Tube-based robust model predictive control of multi-zone demand-controlled ventilation systems for energy saving and indoor air quality," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moghadam, Talie T. & Ochoa Morales, Carlos E. & Lopez Zambrano, Maria J. & Bruton, Ken & O'Sullivan, Dominic T.J., 2023. "Energy efficient ventilation and indoor air quality in the context of COVID-19 - A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chunxiao & Cui, Can & Li, Ming, 2023. "A proactive 2-stage indoor CO2-based demand-controlled ventilation method considering control performance and energy efficiency," Applied Energy, Elsevier, vol. 329(C).
    2. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    3. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    4. Mahmud, Arafat & Dhrubo, Ehsan Ahmed & Ahmed, S. Shahnawaz & Chowdhury, Abdul Hasib & Hossain, Md. Farhad & Rahman, Hamidur & Masood, Nahid-Al, 2022. "Energy conservation for existing cooling and lighting loads," Energy, Elsevier, vol. 255(C).
    5. Sinha, Anshuman & Thakkar, Harshul & Rezaei, Fateme & Kawajiri, Yoshiaki & Realff, Matthew J., 2022. "Reduced building energy consumption by combined indoor CO2 and H2O composition control," Applied Energy, Elsevier, vol. 322(C).
    6. Wang, Huan & Liang, Chenjiyu & Wang, Guijin & Li, Xianting, 2024. "Energy-saving potential of fresh air management using camera-based indoor occupancy positioning system in public open space," Applied Energy, Elsevier, vol. 356(C).
    7. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2020. "Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization," Applied Energy, Elsevier, vol. 271(C).
    8. Guanjing Lin & Armando Casillas & Maggie Sheng & Jessica Granderson, 2023. "Performance Evaluation of an Occupancy-Based HVAC Control System in an Office Building," Energies, MDPI, vol. 16(20), pages 1-21, October.
    9. Mpho J. Lencwe & SP Daniel Chowdhury & Sipho Mahlangu & Maxwell Sibanyoni & Louwrance Ngoma, 2021. "An Efficient HVAC Network Control for Safety Enhancement of a Typical Uninterrupted Power Supply Battery Storage Room," Energies, MDPI, vol. 14(16), pages 1-23, August.
    10. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    11. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    12. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    13. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    14. Khatibi, Mahmood & Rahnama, Samira & Vogler-Finck, Pierre & Dimon Bendtsen, Jan & Afshari, Alireza, 2023. "Towards designing an aggregator to activate the energy flexibility of multi-zone buildings using a hierarchical model-based scheme," Applied Energy, Elsevier, vol. 333(C).
    15. Imran & Naeem Iqbal & Shabir Ahmad & Do Hyeun Kim, 2021. "Towards Mountain Fire Safety Using Fire Spread Predictive Analytics and Mountain Fire Containment in IoT Environment," Sustainability, MDPI, vol. 13(5), pages 1-23, February.
    16. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    17. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control for Demand- and Market-Responsive building energy management by leveraging active latent heat storage," Applied Energy, Elsevier, vol. 327(C).
    18. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    19. Lantonio, Nicole A. & Krarti, Moncef, 2022. "Simultaneous design and control optimization of smart glazed windows," Applied Energy, Elsevier, vol. 328(C).
    20. Wenbo Zhao & Ling Fan, 2024. "Short-Term Load Forecasting Method for Industrial Buildings Based on Signal Decomposition and Composite Prediction Model," Sustainability, MDPI, vol. 16(6), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.