IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i6p2254-d1353330.html
   My bibliography  Save this article

Characteristics and Influencing Factors of Storm Surge-Induced Salinity Augmentation in the Pearl River Estuary, South China

Author

Listed:
  • Yixiao Gao

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
    Guangdong Provincial Engineering Research Center for Public Security and Disasters, Guangzhou 510006, China)

  • Xianwei Wang

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
    Guangdong Provincial Engineering Research Center for Public Security and Disasters, Guangzhou 510006, China
    Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China)

  • Chunyu Dong

    (Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
    School of Civil Engineering, Sun Yat-sen University, Zhuhai 519082, China)

  • Jie Ren

    (Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
    School of Marine Science, Sun Yat-sen University, Zhuhai 519082, China)

  • Qingnian Zhang

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China)

  • Ying Huang

    (Guangxi Academy of Sciences, Nanning 530007, China)

Abstract

The Pearl River Estuary (PRE) frequently experiences the impacts of typhoons, storm surges, and saltwater intrusion. While previous research has mainly focused on saltwater intrusion during the dry season, there is limited research on saltwater intrusion caused by storm surges in the PRE. In this study, we systematically investigate the effects of ten typical autumnal typhoons and associated storm surges on saltwater intrusion in the Modaomen Waterway using in situ data of water level, river discharge, and chloride concentrations from 2006 to 2022. We introduce the concept of Storm surge-Induced Salinity Augmentation (SISA) and analyze its characteristics and primary influencing factors. Our findings reveal that SISA primarily occurs in autumn, with reduced upstream river discharge and the dominance of high-salinity water in the estuary. SISA occurs immediately after storm surges and grows rapidly and violently, with a time lag of 2–4 h, but rapidly recedes after the typhoon passage due to heavy rainfall and high freshwater discharge. Typhoons with a westward trajectory have a greater influence, and the southeastern winds outside the estuary during typhoon events are the primary factors determining the intensity of SISA. Pre-typhoon river discharge affects the range and duration of saltwater intrusion. Moreover, the coupling effect of extreme river dryness, spring tide, and storm surges significantly enhances saltwater intrusion. Further research is needed to quantify the spatiotemporal characteristics of SISA accurately.

Suggested Citation

  • Yixiao Gao & Xianwei Wang & Chunyu Dong & Jie Ren & Qingnian Zhang & Ying Huang, 2024. "Characteristics and Influencing Factors of Storm Surge-Induced Salinity Augmentation in the Pearl River Estuary, South China," Sustainability, MDPI, vol. 16(6), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2254-:d:1353330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/6/2254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/6/2254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bingjun Liu & Yeying Liao & Shulan Yan & Hengheng Yan, 2017. "Dynamic characteristics of saltwater intrusion in the Pearl River Estuary, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1097-1117, December.
    2. Dedi Liu & Xiaohong Chen & Zhanghua Lou, 2010. "A Model for the Optimal Allocation of Water Resources in a Saltwater Intrusion Area: A Case Study in Pearl River Delta in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 63-81, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Songsong Liu & Lazaros Papageorgiou & Petros Gikas, 2012. "Integrated Management of Non-conventional Water Resources in Anhydrous Islands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 359-375, January.
    2. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    3. Jing Tian & Dedi Liu & Shenglian Guo & Zhengke Pan & Xingjun Hong, 2019. "Impacts of Inter-Basin Water Transfer Projects on Optimal Water Resources Allocation in the Hanjiang River Basin, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    4. Dedi Liu & Shenglian Guo & Pan Liu & Hui Zou & Xingjun Hong, 2019. "Rational Function Method for Allocating Water Resources in the Coupled Natural-Human Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 57-73, January.
    5. Wang, Chao & Sun, Qiyuan & Wang, Peifang & Hou, Jun & Qu, Aiyu, 2013. "An optimization approach to runoff regulation for potential estuarine eutrophication control: Model development and a case study of Yangtze Estuary, China," Ecological Modelling, Elsevier, vol. 251(C), pages 199-210.
    6. Li Pan & Xudong Chen & Lu Zhao & Anran Xiao, 2019. "Does Information Asymmetry Impact Sub-Regions’ Cooperation of Regional Water Resource Allocation?," IJERPH, MDPI, vol. 16(21), pages 1-16, November.
    7. R. Roozbahani & B. Abbasi & S. Schreider & A. Ardakani, 2014. "A Multi-objective Approach for Transboundary River Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5447-5463, December.
    8. Mohammad Karamouz & Sara Nazif & Mohammad Sherafat & Zahra Zahmatkesh, 2014. "Development of an Optimal Reservoir Operation Scheme Using Extended Evolutionary Computing Algorithms Based on Conflict Resolution Approach: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3539-3554, September.
    9. Dan Yan & Saskia E. Werners & He Qing Huang & Fulco Ludwig, 2016. "Identifying and Assessing Robust Water Allocation Plans for Deltas Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5421-5435, November.
    10. Jing Tian & Shenglian Guo & Dedi Liu & Zhengke Pan & Xingjun Hong, 2019. "A Fair Approach for Multi-Objective Water Resources Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3633-3653, August.
    11. Zeng, Yujie & Liu, Dedi & Guo, Shenglian & Xiong, Lihua & Liu, Pan & Chen, Jie & Yin, Jiabo & Wu, Zhenhui & Zhou, Wan, 2023. "Assessing the effects of water resources allocation on the uncertainty propagation in the water–energy–food–society (WEFS) nexus," Agricultural Water Management, Elsevier, vol. 282(C).
    12. David Martínez-Granados & José Maestre-Valero & Javier Calatrava & Victoriano Martínez-Alvarez, 2011. "The Economic Impact of Water Evaporation Losses from Water Reservoirs in the Segura Basin, SE Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3153-3175, October.
    13. Hadi Tarebari & Amir Hossein Javid & Seyyed Ahmad Mirbagheri & Hedayat Fahmi, 2018. "Multi-Objective Surface Water Resource Management Considering Conflict Resolution and Utility Function Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4487-4509, November.
    14. Amir Hatamkhani & Ali Moridi, 2021. "Optimal Development of Agricultural Sectors in the Basin Based on Economic Efficiency and Social Equality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 917-932, February.
    15. Bingjun Liu & Yeying Liao & Shulan Yan & Hengheng Yan, 2017. "Dynamic characteristics of saltwater intrusion in the Pearl River Estuary, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1097-1117, December.
    16. Dongguo Shao & Xudong Li & Wenquan Gu, 2015. "A Method for Temporary Water Scarcity Analysis in Humid Region Under Droughts Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3823-3839, August.
    17. Chih-Liang Kuo & Nien-Sheng Hsu, 2011. "An Optimization Model for Crucial Key Pipes and Mechanical Reliability: A Case Study on a Water Distribution System in Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 763-775, January.
    18. Hamideh Hosseini Safa & Saeed Morid & Mahnoush Moghaddasi, 2012. "Incorporating Economy and Long-term Inflow Forecasting Uncertainty into Decision-making for Agricultural Water Allocation during Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2267-2281, June.
    19. Lingling Zhao & Jun Xia & Leszek Sobkowiak & Zhonggen Wang & Fengrui Guo, 2012. "Spatial Pattern Characterization and Multivariate Hydrological Frequency Analysis of Extreme Precipitation in the Pearl River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3619-3637, September.
    20. Shenlin Li & Xiaohong Chen & Vijay P. Singh & Yanhu He, 2018. "Assumption-Simulation-Feedback-Adjustment (ASFA) Framework for Real-Time Correction of Water Resources Allocation: a Case Study of Longgang River Basin in Southern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3871-3886, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2254-:d:1353330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.