IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p2210-d1352434.html
   My bibliography  Save this article

Mitigation and Adaptation Strategies for Different Urban Fabrics to Face Increasingly Hot Summer Days Due to Climate Change

Author

Listed:
  • Paola Lassandro

    (ITC-CNR, Construction Technologies Institute, Italian National Research Council, Branch of Bari, Via Paolo Lembo 38b, 70124 Bari, Italy)

  • Sara Antonella Zaccaro

    (ITC-CNR, Construction Technologies Institute, Italian National Research Council, Branch of Bari, Via Paolo Lembo 38b, 70124 Bari, Italy)

  • Silvia Di Turi

    (DUEE-ENEA, Department Unit of Energy Efficiency, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy)

Abstract

As global warming and heat waves are becoming more frequent and severe, cities, with their different morphological districts, must be at the forefront of environmental challenges. Notably, many Mediterranean towns maintain the original medieval urban fabric and the regular one. The research focuses on the development of a methodology with the application of high-resolution 3D modelling software ENVI-met V5.1 to analyze the microclimatic effects of mitigation and adaptation strategies derived from the study of medieval and regular urban fabric. The aim is to address contemporary challenges such as heat waves and urban heat island (UHI) effects in modern cities. By studying outdoor energy behavior in a southern Italian city (Bari), the research proposes scenarios for urban settlements in the face of climate change. This approach provides recommendations for creating more climate-resilient urban environments both in the historic and modern city. The use of trees with large crowns and tall shrubs and the inclusion of fountain jets are strategies to achieve sky view factor and air temperatures in the modern city similar to those in the historical fabric. Increasing albedo values and the use of green roofs prove to be further strategies for improving outdoor climatic conditions.

Suggested Citation

  • Paola Lassandro & Sara Antonella Zaccaro & Silvia Di Turi, 2024. "Mitigation and Adaptation Strategies for Different Urban Fabrics to Face Increasingly Hot Summer Days Due to Climate Change," Sustainability, MDPI, vol. 16(5), pages 1-30, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2210-:d:1352434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/2210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/2210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgia Spyrou & Byron Ioannou & Manolis Souliotis & Andreas L. Savvides & Paris A. Fokaides, 2023. "The Adaptability of Cities to Climate Change: Evidence from Cities’ Redesign towards Mitigating the UHI Effect," Sustainability, MDPI, vol. 15(7), pages 1-21, April.
    2. Alec Feinberg, 2023. "Urbanization Heat Flux Modeling Confirms It Is a Likely Cause of Significant Global Warming: Urbanization Mitigation Requirements," Land, MDPI, vol. 12(6), pages 1-34, June.
    3. Prades-Gil, C. & Viana-Fons, J.D. & Masip, X. & Cazorla-Marín, A. & Gómez-Navarro, T., 2023. "An agile heating and cooling energy demand model for residential buildings. Case study in a mediterranean city residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    4. Martina Giorio & Rossana Paparella, 2023. "Climate Mitigation Strategies: The Use of Cool Pavements," Sustainability, MDPI, vol. 15(9), pages 1-26, May.
    5. Biao Liu & Xian Guo & Jie Jiang, 2023. "How Urban Morphology Relates to the Urban Heat Island Effect: A Multi-Indicator Study," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haiqiang Liu & Zhiheng Zhou & Qiang Wen & Jinyuan Chen & Shoichi Kojima, 2024. "Spatiotemporal Land Use/Land Cover Changes and Impact on Urban Thermal Environments: Analyzing Cool Island Intensity Variations," Sustainability, MDPI, vol. 16(8), pages 1-21, April.
    2. George M. Stavrakakis & Dimitris A. Katsaprakakis & Konstantinos Braimakis, 2023. "A Computational Fluid Dynamics Modelling Approach for the Numerical Verification of the Bioclimatic Design of a Public Urban Area in Greece," Sustainability, MDPI, vol. 15(15), pages 1-27, July.
    3. Mergim Gaši & Bojan Milovanović & Marino Grozdek & Marina Bagarić, 2023. "Laplace and State-Space Methods for Calculating the Heat Losses in Case of Heavyweight Building Elements and Short Sampling Times," Energies, MDPI, vol. 16(11), pages 1-18, May.
    4. Sebastiano Anselmo & Maria Ferrara, 2023. "Trends and Evolution of the GIS-Based Photovoltaic Potential Calculation," Energies, MDPI, vol. 16(23), pages 1-27, November.
    5. Tao Shen & Wenshiqi Zhou & Shuai Yuan & Liang Huo, 2024. "Spatiotemporal Characterization of the Three-Dimensional Morphology of Urban Buildings Based on Moran’s I," Sustainability, MDPI, vol. 16(15), pages 1-16, July.
    6. Majid Baseer & Christian Ghiaus & Roxane Viala & Ninon Gauthier & Souleymane Daniel, 2023. "pELECTRE-Tri: Probabilistic ELECTRE-Tri Method—Application for the Energy Renovation of Buildings," Energies, MDPI, vol. 16(14), pages 1-25, July.
    7. Magdalena Gyurkovich & Joanna Kołata & Marta Pieczara & Piotr Zierke, 2024. "Assessment of the Greenery Content in Suburban Multi-Family Housing Models in Poland: A Case Study of the Poznań Metropolitan Area," Sustainability, MDPI, vol. 16(8), pages 1-31, April.
    8. Cansu Güller & Süleyman Toy, 2024. "The Impacts of Urban Morphology on Urban Heat Islands in Housing Areas: The Case of Erzurum, Turkey," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    9. Yan Rao & Shaohua Zhang & Kun Yang & Yan Ma & Weilin Wang & Lede Niu, 2024. "Scale Differences and Gradient Effects of Local Climate Zone Spatial Pattern on Urban Heat Island Impact—A Case in Guangzhou’s Core Area," Sustainability, MDPI, vol. 16(15), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2210-:d:1352434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.