IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1916-d1346313.html
   My bibliography  Save this article

A Flexible Inventory of Survey Items for Environmental Concepts Generated via Special Attention to Content Validity and Item Response Theory

Author

Listed:
  • John A. Vucetich

    (College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA)

  • Jeremy T. Bruskotter

    (School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA)

  • Benjamin Ghasemi

    (Human Dimensions of Natural Resources Department, Colorado State University, Fort Collins, CO 80523, USA)

  • Claire E. Rapp

    (Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA)

  • Michael Paul Nelson

    (Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA)

  • Kristina M. Slagle

    (School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA)

Abstract

We demonstrate how many important measures of belief about the environmental suffer from poor content validity and inadequate conceptual breadth (dimensionality). We used scholarship in environmental science and philosophy to propose a list of 13 environmental concepts that can be held as beliefs. After precisely articulating the concepts, we developed 85 trial survey items that emphasized content validity for each concept. The concepts’ breadth and the items’ content validity were aided by scrutiny from 17 knowledgeable critics. We administered the trial items to 449 residents of the United States and used item response theory to reduce the 85 trial items to smaller sets of items for use when survey brevity is required. The reduced sets offered good predictive ability for two environmental attitudes ( R 2 = 0.42 and 0.46) and indices of pro-environmental behavior (PEB, R 2 = 0.23) and behavioral intention ( R 2 = 0.25). The predictive results were highly interpretable, owing to their robust content validity. For example, PEB was predicted by the degree to which one believes nature to be sacred, but not by the degree of one’s non-anthropocentrism. Concepts with the greatest overall predictive ability were Sacredness and Hope. Belief in non-anthropocentrism had little predictive ability for all four response variables—a claim that previously could not have been made given the widespread poverty of content validity for items representing non-anthropocentrism in existing instruments. The approach described here is especially amenable to incremental improvement, as other researchers propose more informative survey items and potentially important concepts of environmental beliefs we overlooked.

Suggested Citation

  • John A. Vucetich & Jeremy T. Bruskotter & Benjamin Ghasemi & Claire E. Rapp & Michael Paul Nelson & Kristina M. Slagle, 2024. "A Flexible Inventory of Survey Items for Environmental Concepts Generated via Special Attention to Content Validity and Item Response Theory," Sustainability, MDPI, vol. 16(5), pages 1-34, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1916-:d:1346313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1916/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1916/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kevin McCann & Alan Hastings & Gary R. Huxel, 1998. "Weak trophic interactions and the balance of nature," Nature, Nature, vol. 395(6704), pages 794-798, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Chuanjun & Zhao, Min & Chen, Lansun, 2012. "Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 83-97.
    2. George Van Voorn & Geerten Hengeveld & Jan Verhagen, 2020. "An agent based model representation to assess resilience and efficiency of food supply chains," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-27, November.
    3. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Miehls, Andrea L. Jaeger & Mason, Doran M. & Frank, Kenneth A. & Krause, Ann E. & Peacor, Scott D. & Taylor, William W., 2009. "Invasive species impacts on ecosystem structure and function: A comparison of the Bay of Quinte, Canada, and Oneida Lake, USA, before and after zebra mussel invasion," Ecological Modelling, Elsevier, vol. 220(22), pages 3182-3193.
    5. Christopher C Wilmers & Wayne M Getz, 2005. "Gray Wolves as Climate Change Buffers in Yellowstone," PLOS Biology, Public Library of Science, vol. 3(4), pages 1-1, March.
    6. Scotti, Marco & Bondavalli, Cristina & Bodini, Antonio, 2009. "Linking trophic positions and flow structure constraints in ecological networks: Energy transfer efficiency or topology effect?," Ecological Modelling, Elsevier, vol. 220(21), pages 3070-3080.
    7. Chun-Wei Chang & Takeshi Miki & Hao Ye & Sami Souissi & Rita Adrian & Orlane Anneville & Helen Agasild & Syuhei Ban & Yaron Be’eri-Shlevin & Yin-Ru Chiang & Heidrun Feuchtmayr & Gideon Gal & Satoshi I, 2022. "Causal networks of phytoplankton diversity and biomass are modulated by environmental context," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Hartvig, Martin & Andersen, Ken Haste, 2013. "Coexistence of structured populations with size-based prey selection," Theoretical Population Biology, Elsevier, vol. 89(C), pages 24-33.
    9. Yacine, Youssef & Loeuille, Nicolas, 2022. "Stable coexistence in plant-pollinator-herbivore communities requires balanced mutualistic vs antagonistic interactions," Ecological Modelling, Elsevier, vol. 465(C).
    10. Sandra Hervías-Parejo & Mar Cuevas-Blanco & Lucas Lacasa & Anna Traveset & Isabel Donoso & Ruben Heleno & Manuel Nogales & Susana Rodríguez-Echeverría & Carlos J. Melián & Victor M. Eguíluz, 2024. "On the structure of species-function participation in multilayer ecological networks," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    12. Perc, Matjaž, 2007. "Effects of small-world connectivity on noise-induced temporal and spatial order in neural media," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 280-291.
    13. Chang, Feng-Hsun & Ke, Po-Ju & Cardinale, Bradley, 2020. "Weak intra-guild predation facilitates consumer coexistence but does not guarantee higher consumer density," Ecological Modelling, Elsevier, vol. 424(C).
    14. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    15. Wang, Shuran Cindy & Liu, Xueqin & Liu, Yong & Wang, Hongzhu, 2020. "Benthic-pelagic coupling in lake energetic food webs," Ecological Modelling, Elsevier, vol. 417(C).
    16. Rose, Kenneth A. & Sable, Shaye & DeAngelis, Donald L. & Yurek, Simeon & Trexler, Joel C. & Graf, William & Reed, Denise J., 2015. "Proposed best modeling practices for assessing the effects of ecosystem restoration on fish," Ecological Modelling, Elsevier, vol. 300(C), pages 12-29.
    17. Zhang, Chongliang & Chen, Yong & Ren, Yiping, 2016. "The efficacy of fisheries closure in rebuilding depleted stocks: Lessons from size-spectrum modeling," Ecological Modelling, Elsevier, vol. 332(C), pages 59-66.
    18. Md Sayeed Anwar & Dibakar Ghosh & Nikita Frolov, 2021. "Relay Synchronization in a Weighted Triplex Network," Mathematics, MDPI, vol. 9(17), pages 1-10, September.
    19. Rayfield, Bronwyn & Moilanen, Atte & Fortin, Marie-Josée, 2009. "Incorporating consumer–resource spatial interactions in reserve design," Ecological Modelling, Elsevier, vol. 220(5), pages 725-733.
    20. Bagchi, Dweepabiswa & Arumugam, Ramesh & Chandrasekar, V.K. & Senthilkumar, D.V., 2022. "Metacommunity stability and persistence for predation turnoff in selective patches," Ecological Modelling, Elsevier, vol. 470(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1916-:d:1346313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.