Compared Environmental Lifecycle Performances of Earth-Based Walls to Drive Building Envelope Design
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ben-Alon, L. & Loftness, V. & Harries, K.A. & Cochran Hameen, E., 2021. "Life cycle assessment (LCA) of natural vs conventional building assemblies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Shukla, Ashish & Tiwari, G.N. & Sodha, M.S., 2009. "Embodied energy analysis of adobe house," Renewable Energy, Elsevier, vol. 34(3), pages 755-761.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ebru Ergöz Karahan & Özgür Göçer & Kenan Göçer & Didem Boyacıoğlu, 2021. "An Investigation of Occupant Energy-Saving Behavior in Vernacular Houses of Behramkale (Assos)," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
- Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
- Alina Galimshina & Maliki Moustapha & Alexander Hollberg & Sébastien Lasvaux & Bruno Sudret & Guillaume Habert, 2024. "Strategies for robust renovation of residential buildings in Switzerland," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Ben-Alon, L. & Loftness, V. & Harries, K.A. & Cochran Hameen, E., 2021. "Life cycle assessment (LCA) of natural vs conventional building assemblies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Gianmarco Fajilla & Emiliano Borri & Marilena De Simone & Luisa F. Cabeza & Luís Bragança, 2021. "Effect of Climate Change and Occupant Behaviour on the Environmental Impact of the Heating and Cooling Systems of a Real Apartment. A Parametric Study through Life Cycle Assessment," Energies, MDPI, vol. 14(24), pages 1-21, December.
- Monica C. M. Parlato & Simona M. C. Porto & Carmen Galán-Marín & Carlos Alberto Rivera-Gómez & Massimo Cuomo & Francesco Nocera, 2023. "Thermal Performance, Microstructure Analysis and Strength Characterisation of Agro-Waste Reinforced Soil Materials," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
- Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
- Carmen Galán-Marín & Alejandro Martínez-Rocamora & Jaime Solís-Guzmán & Carlos Rivera-Gómez, 2018. "Natural Stabilized Earth Panels versus Conventional Façade Systems. Economic and Environmental Impact Assessment," Sustainability, MDPI, vol. 10(4), pages 1-13, March.
- Chandel, S.S. & Sharma, Vandna & Marwah, Bhanu M., 2016. "Review of energy efficient features in vernacular architecture for improving indoor thermal comfort conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 459-477.
- Deborah Arduin & Lucas Rosse Caldas & Rayane de Lima Moura Paiva & Fernando Rocha, 2022. "Life Cycle Assessment (LCA) in Earth Construction: A Systematic Literature Review Considering Five Construction Techniques," Sustainability, MDPI, vol. 14(20), pages 1-30, October.
- Valenzuela, Marian & Ciudad, Gustavo & Cárdenas, Juan Pablo & Medina, Carlos & Salas, Alexis & Oñate, Angelo & Pincheira, Gonzalo & Attia, Shady & Tuninetti, Víctor, 2024. "Towards the development of performance-efficient compressed earth blocks from industrial and agro-industrial by-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
- Wu Deng & Jing Xie & Zhen Peng, 2018. "Material Transitions and Associated Embodied Energy Input of Rural Buildings: Case Study of Qinyong Village in Ningbo China," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
- Carlos Eduardo Rincón & Jorge Augusto Montoya & Hector F. Archila, 2023. "Bamboo Construction Inspired by Vernacular Techniques for Reducing Carbon Footprint: A Life Cycle Assessment (LCA)," Sustainability, MDPI, vol. 15(24), pages 1-15, December.
More about this item
Keywords
raw earth construction; life cycle assessment; carbon emissions; water footprint; embodied energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1367-:d:1334338. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.