IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16893-d1301206.html
   My bibliography  Save this article

Bamboo Construction Inspired by Vernacular Techniques for Reducing Carbon Footprint: A Life Cycle Assessment (LCA)

Author

Listed:
  • Carlos Eduardo Rincón

    (Facultad de Ciencias Ambientales, Universidad Tecnológica de Pereira, Pereira 660017, Colombia)

  • Jorge Augusto Montoya

    (Facultad de Ciencias Ambientales, Universidad Tecnológica de Pereira, Pereira 660017, Colombia)

  • Hector F. Archila

    (School of Architecture and Environment, College of Arts, Technology and Environment (CATE), University of the West of England, Bristol BS16 1QY, UK)

Abstract

Whilst upcoming innovations on digital technology and renewable energy can have a significant impact on the reduction of operational carbon emissions in the construction industry, readily available fast-growing building materials like bamboo are already proving reductions in the embodied carbon of dwellings above 60% when compared to traditional brickwork in Colombia. This paper presents a like-by-like comparison of the environmental impact of a conventional clay brick house (CBH) and a bamboo house for social housing in Colombia, which was built using adapted vernacular technologies. The bamboo house uses bamboo species Guadua angustifolia Kunth as the main structural support for the light cement bamboo frame (LCBF) system, a.k.a. ‘cemented bahareque’, whilst the CBH combines clay bricks and steel for the load-bearing walls. Traditionally built Guadua angustifolia Kunth bahareque (GaKB) houses are a key part of the vernacular architecture in the ‘coffee cultural landscape of Colombia’ (CCLC) recognised by UNESCO. A life cycle assessment (LCA) was performed to calculate the carbon footprint of the houses following four phases: (1) definition of objective and scope; (2) inventory analysis; (3) impact assessment; and (4) interpretation of results. The results show that the carbon footprint of the GaKB house accounts for about 40% of the CBH, i.e., the GaKB generates a carbon footprint of 107.17 CO 2 -eq/m 2 whilst the CBH results in a carbon footprint of 298.44 kg CO 2 -eq/m 2 . Furthermore, from a carbon balance calculation, the carbon footprint of the GaKB house is further reduced to about 36% of the CSB house. LCA results for the built GaKB house demonstrate that vernacular housing projects that preserve cultural heritage can also be resilient and climate-neutral. This paper sets a precedent for the establishment of targeted government policies and industry practices that preserve the cultural heritage and vernacular technologies in the CCLC region and in other emergent economies worldwide whilst promoting future-proof and net-zero carbon construction.

Suggested Citation

  • Carlos Eduardo Rincón & Jorge Augusto Montoya & Hector F. Archila, 2023. "Bamboo Construction Inspired by Vernacular Techniques for Reducing Carbon Footprint: A Life Cycle Assessment (LCA)," Sustainability, MDPI, vol. 15(24), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16893-:d:1301206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ben-Alon, L. & Loftness, V. & Harries, K.A. & Cochran Hameen, E., 2021. "Life cycle assessment (LCA) of natural vs conventional building assemblies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alina Galimshina & Maliki Moustapha & Alexander Hollberg & Sébastien Lasvaux & Bruno Sudret & Guillaume Habert, 2024. "Strategies for robust renovation of residential buildings in Switzerland," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Gianmarco Fajilla & Emiliano Borri & Marilena De Simone & Luisa F. Cabeza & Luís Bragança, 2021. "Effect of Climate Change and Occupant Behaviour on the Environmental Impact of the Heating and Cooling Systems of a Real Apartment. A Parametric Study through Life Cycle Assessment," Energies, MDPI, vol. 14(24), pages 1-21, December.
    3. Giada Giuffrida & Letizia Dipasquale & Riccardo Maria Pulselli & Rosa Caponetto, 2024. "Compared Environmental Lifecycle Performances of Earth-Based Walls to Drive Building Envelope Design," Sustainability, MDPI, vol. 16(4), pages 1-22, February.
    4. Deborah Arduin & Lucas Rosse Caldas & Rayane de Lima Moura Paiva & Fernando Rocha, 2022. "Life Cycle Assessment (LCA) in Earth Construction: A Systematic Literature Review Considering Five Construction Techniques," Sustainability, MDPI, vol. 14(20), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16893-:d:1301206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.