IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p2016-d152521.html
   My bibliography  Save this article

Material Transitions and Associated Embodied Energy Input of Rural Buildings: Case Study of Qinyong Village in Ningbo China

Author

Listed:
  • Wu Deng

    (Department of Architecture and Built Environment, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315000, China)

  • Jing Xie

    (Department of Architecture and Built Environment, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315000, China)

  • Zhen Peng

    (Department of Architecture and Built Environment, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315000, China)

Abstract

From the early 1980s onward, construction practice in rural China has shown a gradual transformation from using locally available materials to urban-like and highly processed modern building materials. This transition may have a significant impact on a building’s environmental performance, such as its indoor thermal comfort and embodied energy intensity. This paper examines three types of houses built in a village in China in the 1970s, the 1980s, and the 1990s. The research indicates that replacing traditional materials with modern ones has not improved the indoor thermal comfort equally with the increase of embodied energy input. Dismantling traditional houses to give way to new houses with modern materials is not the way to improve indoor thermal comfort. The buildings completed in the 1980s and the 1990s in rural China require special attention in future thermal retrofitting plans.

Suggested Citation

  • Wu Deng & Jing Xie & Zhen Peng, 2018. "Material Transitions and Associated Embodied Energy Input of Rural Buildings: Case Study of Qinyong Village in Ningbo China," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2016-:d:152521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/2016/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/2016/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John E. Fernández, 2007. "Resource Consumption of New Urban Construction in China," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 99-115, April.
    2. Shukla, Ashish & Tiwari, G.N. & Sodha, M.S., 2009. "Embodied energy analysis of adobe house," Renewable Energy, Elsevier, vol. 34(3), pages 755-761.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Joseph Sirgy & Eda Gurel-Atay & Dave Webb & Muris Cicic & Melika Husic-Mehmedovic & Ahmet Ekici & Andreas Herrmann & Ibrahim Hegazy & Dong-Jin Lee & J. Johar, 2013. "Is Materialism All That Bad? Effects on Satisfaction with Material Life, Life Satisfaction, and Economic Motivation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 110(1), pages 349-366, January.
    2. Ebru Ergöz Karahan & Özgür Göçer & Kenan Göçer & Didem Boyacıoğlu, 2021. "An Investigation of Occupant Energy-Saving Behavior in Vernacular Houses of Behramkale (Assos)," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    3. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    4. Chang, Yuan & Ries, Robert J. & Wang, Yaowu, 2010. "The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model," Energy Policy, Elsevier, vol. 38(11), pages 6597-6603, November.
    5. Jiao Hou & Xinhai Lu & Shiman Wu & Shangan Ke & Jia Li, 2022. "Analysis of the Dynamic Relationship between Green Economy Efficiency and Urban Land Development Intensity in China," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    6. Jingru Liu & Haotong Wu & Xin Tian & Heming Wang & Yinglei Wu, 2022. "Materials footprint of household consumption in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1504-1513, August.
    7. Ben-Alon, L. & Loftness, V. & Harries, K.A. & Cochran Hameen, E., 2021. "Life cycle assessment (LCA) of natural vs conventional building assemblies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Yongwei Liu & Xiaoshu Cao & Tao Li, 2020. "Identifying Driving Forces of Built-Up Land Expansion Based on the Geographical Detector: A Case Study of Pearl River Delta Urban Agglomeration," IJERPH, MDPI, vol. 17(5), pages 1-17, March.
    9. Monica C. M. Parlato & Simona M. C. Porto & Carmen Galán-Marín & Carlos Alberto Rivera-Gómez & Massimo Cuomo & Francesco Nocera, 2023. "Thermal Performance, Microstructure Analysis and Strength Characterisation of Agro-Waste Reinforced Soil Materials," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
    10. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    11. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    12. Carmen Galán-Marín & Alejandro Martínez-Rocamora & Jaime Solís-Guzmán & Carlos Rivera-Gómez, 2018. "Natural Stabilized Earth Panels versus Conventional Façade Systems. Economic and Environmental Impact Assessment," Sustainability, MDPI, vol. 10(4), pages 1-13, March.
    13. Chandel, S.S. & Sharma, Vandna & Marwah, Bhanu M., 2016. "Review of energy efficient features in vernacular architecture for improving indoor thermal comfort conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 459-477.
    14. Giada Giuffrida & Letizia Dipasquale & Riccardo Maria Pulselli & Rosa Caponetto, 2024. "Compared Environmental Lifecycle Performances of Earth-Based Walls to Drive Building Envelope Design," Sustainability, MDPI, vol. 16(4), pages 1-22, February.
    15. Valenzuela, Marian & Ciudad, Gustavo & Cárdenas, Juan Pablo & Medina, Carlos & Salas, Alexis & Oñate, Angelo & Pincheira, Gonzalo & Attia, Shady & Tuninetti, Víctor, 2024. "Towards the development of performance-efficient compressed earth blocks from industrial and agro-industrial by-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    16. Huang, Cheng & Han, Ji & Chen, Wei-Qiang, 2017. "Changing patterns and determinants of infrastructures’ material stocks in Chinese cities," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 47-53.
    17. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.
    18. Xue, Bing & Chen, Xing-peng & Geng, Yong & Guo, Xiao-jia & Lu, Cheng-peng & Zhang, Zi-long & Lu, Chen-yu, 2010. "Survey of officials’ awareness on circular economy development in China: Based on municipal and county level," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1296-1302.
    19. Honghao Ren & Henk Folmer & Arno Vlist, 2014. "What role does the real estate–construction sector play in China’s regional economy?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(3), pages 839-857, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2016-:d:152521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.