IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1357-d1334131.html
   My bibliography  Save this article

Technical, Economic, and Environmental Investigation of Pumped Hydroelectric Energy Storage Integrated with Photovoltaic Systems in Jordan

Author

Listed:
  • Bashar Hammad

    (Department of Mechanical and Maintenance Engineering, German Jordanian University, Madaba Street, P.O. Box 35247, Amman 11180, Jordan)

  • Sameer Al-Dahidi

    (Department of Mechanical and Maintenance Engineering, German Jordanian University, Madaba Street, P.O. Box 35247, Amman 11180, Jordan)

  • Yousef Aldahouk

    (Department of Mechanical and Maintenance Engineering, German Jordanian University, Madaba Street, P.O. Box 35247, Amman 11180, Jordan)

  • Daniel Majrouh

    (Department of Mechanical and Maintenance Engineering, German Jordanian University, Madaba Street, P.O. Box 35247, Amman 11180, Jordan)

  • Suhib Al-Remawi

    (Department of Mechanical and Maintenance Engineering, German Jordanian University, Madaba Street, P.O. Box 35247, Amman 11180, Jordan)

Abstract

In this study, the technical and economic feasibility of employing pumped hydroelectric energy storage (PHES) systems at potential locations in Jordan is investigated. In each location, a 1 MW p off-grid photovoltaic (PV) system was installed near the dam reservoir to drive pumps that transfer water up to an upper reservoir at a certain distance and elevation. PVsyst (Version 7.3.4) is implemented to simulate the water flow rate pumped to the upper reservoir at each location. The water in the upper reservoir is presumed to flow back into the dam reservoir through a turbine during peak hours at night to power a 1 MW load. Based on the water volume in the upper reservoir, the power generated through the turbine was estimated using HOMER Pro ® (Version 3.15.3), and the power exported to the grid (when the power generated from the turbine is more than the power required by the driven load) was also determined. It is worth mentioning that scaling up the size of PV and hydropower systems is a straightforward approach considering the modular nature of such systems. However, the quantity of water in the dam reservoir that is allowed to be pumped is the main determinant for the size of a PHES system. The technical and economic results show that the potential of employing these locations to implement PHES systems is great. In addition, a study was conducted to estimate how much CO 2 emissions were reduced by generating renewable energy compared to generating the same amount of energy from fossil fuels. These systems increase renewable energy in the energy mix in Jordan, stabilize the grid, and balance the loads, especially during peak periods. More importantly, PHES systems contribute to making the energy sector in Jordan more sustainable.

Suggested Citation

  • Bashar Hammad & Sameer Al-Dahidi & Yousef Aldahouk & Daniel Majrouh & Suhib Al-Remawi, 2024. "Technical, Economic, and Environmental Investigation of Pumped Hydroelectric Energy Storage Integrated with Photovoltaic Systems in Jordan," Sustainability, MDPI, vol. 16(4), pages 1-26, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1357-:d:1334131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1357/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1357/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baha Aldeen Mohammad Fraihat & Ahmad Y. A. Bani Ahmad & Alrefai A. Alaa & Abbas Mohammad Alhawamdeh & Mustafa Mohamed Soumadi & Ezaalden Ahmad Shutawe Aln'emi & Bashar Younis Subeih Alkhawaldeh, 2023. "Evaluating Technology Improvement in Sustainable Development Goals by Analysing Financial Development and Energy Consumption in Jordan," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 348-355, July.
    2. Shaima A. Alnaqbi & Shamma Alasad & Haya Aljaghoub & Abdul Hai Alami & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2022. "Applicability of Hydropower Generation and Pumped Hydro Energy Storage in the Middle East and North Africa," Energies, MDPI, vol. 15(7), pages 1-27, March.
    3. Takele Ferede Agajie & Armand Fopah-Lele & Ahmed Ali & Isaac Amoussou & Baseem Khan & Mahmoud Elsisi & Om Prakash Mahela & Roberto Marcelo Álvarez & Emmanuel Tanyi, 2023. "Optimal Sizing and Power System Control of Hybrid Solar PV-Biogas Generator with Energy Storage System Power Plant," Sustainability, MDPI, vol. 15(7), pages 1-26, March.
    4. Abdelrahman Azzuni & Arman Aghahosseini & Manish Ram & Dmitrii Bogdanov & Upeksha Caldera & Christian Breyer, 2020. "Energy Security Analysis for a 100% Renewable Energy Transition in Jordan by 2050," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    5. Görtz, J. & Aouad, M. & Wieprecht, S. & Terheiden, K., 2022. "Assessment of pumped hydropower energy storage potential along rivers and shorelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Jayanta Bhusan Basu & Subhojit Dawn & Pradip Kumar Saha & Mitul Ranjan Chakraborty & Taha Selim Ustun, 2022. "Economic Enhancement of Wind–Thermal–Hydro System Considering Imbalance Cost in Deregulated Power Market," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    7. Kocaman, Ayse Selin & Modi, Vijay, 2017. "Value of pumped hydro storage in a hybrid energy generation and allocation system," Applied Energy, Elsevier, vol. 205(C), pages 1202-1215.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashraf Farahat & Abdulhaleem H. Labban & Abdul-Wahab S. Mashat & Hosny M. Hasanean & Harry D. Kambezidis, 2024. "Status of Solar-Energy Adoption in GCC, Yemen, Iraq, and Jordan: Challenges and Carbon-Footprint Analysis," Clean Technol., MDPI, vol. 6(2), pages 1-32, June.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Koh, Rachel & Kern, Jordan & Galelli, Stefano, 2022. "Hard-coupling water and power system models increases the complementarity of renewable energy sources," Applied Energy, Elsevier, vol. 321(C).
    4. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    5. Yurter, Gulin & Nadar, Emre & Kocaman, Ayse Selin, 2024. "The impact of pumped hydro energy storage configurations on investment planning of hybrid systems with renewables," Renewable Energy, Elsevier, vol. 222(C).
    6. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    7. Qi Yang & Jing Qian & Jia Li & Yidong Zou & Danning Tian & Yun Zeng & Yan Long & Ganyuan Zhang, 2023. "A New Integral Sliding Mode Control for Hydraulic Turbine Governing Systems Based on Nonlinear Disturbance Observer Compensation," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    8. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    9. Baha Aldeen Mohammad Fraihat & Asma’a Al-Amarneh & Hadeel Yaseen & Miral R. Samarah & Bashar Younis Alkhawaldeh & Ola Buraik, 2023. "Trade Openness, Energy Consumption, and Financial Development Influence on Jordan’s Economy: Evidence from ARDL and Non-Granger Causality Test Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 659-665, November.
    10. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    11. Ting Wang & Qiya Wang & Caiqing Zhang, 2021. "Research on the Optimal Operation of a Novel Renewable Multi-Energy Complementary System in Rural Areas," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    12. Amjath-Babu, T.S. & Sharma, Bikash & Brouwer, Roy & Rasul, Golam & Wahid, Shahriar M. & Neupane, Nilhari & Bhattarai, Utsav & Sieber, Stefan, 2019. "Integrated modelling of the impacts of hydropower projects on the water-food-energy nexus in a transboundary Himalayan river basin," Applied Energy, Elsevier, vol. 239(C), pages 494-503.
    13. Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
    14. Petrollese, Mario & Seche, Pierluigi & Cocco, Daniele, 2019. "Analysis and optimization of solar-pumped hydro storage systems integrated in water supply networks," Energy, Elsevier, vol. 189(C).
    15. Islam, Md. Monirul & Sohag, Kazi & Hammoudeh, Shawkat & Mariev, Oleg & Samargandi, Nahla, 2022. "Minerals import demands and clean energy transitions: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
    16. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    17. Sharma, Rozi & Malaviya, Piyush, 2023. "Ecosystem services and climate action from a circular bioeconomy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    18. Yao Li & Liulin Yang & Tianlu Luo, 2023. "Energy System Low-Carbon Transition under Dual-Carbon Goals: The Case of Guangxi, China Using the EnergyPLAN Tool," Energies, MDPI, vol. 16(8), pages 1-16, April.
    19. Uchman, Wojciech & Skorek-Osikowska, Anna & Jurczyk, Michał & Węcel, Daniel, 2020. "The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit," Energy, Elsevier, vol. 213(C).
    20. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1357-:d:1334131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.