IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p970-d1324710.html
   My bibliography  Save this article

Optimal Scheduling Considering Carbon Capture and Demand Response under Uncertain Output Scenarios for Wind Energy

Author

Listed:
  • Hongbin Sun

    (School of Electrical Engineering, Changchun Institute of Technology, Changchun 130012, China)

  • Hongyu Zou

    (School of Electrical Engineering, Changchun Institute of Technology, Changchun 130012, China)

  • Jingya Wen

    (Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266075, China)

  • Wende Ke

    (Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China)

  • Lei Kou

    (Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266075, China)

Abstract

In light of the uncertainties associated with renewable energy sources like wind and photovoltaics, this study aims to progressively increase their proportion in the energy mix. This is achieved by integrating carbon capture devices into traditional thermal power plants and enhancing demand-side management measures, thereby advancing low-carbon objectives in the energy and electricity sectors. Initially, the research proposes utilizing the K-means clustering algorithm to consolidate and forecast the fluctuating outputs of renewable energies such as wind and photovoltaics. Further, it entails a comprehensive analysis of low-carbon resources on both the supply and demand sides of the electricity system. This includes installing carbon storage and power-to-gas facilities in carbon capture plants to create a versatile operating model that can be synchronized with wind power systems. Additionally, the limitations of carbon capture plants are addressed by mobilizing demand-side response resources and enhancing the system’s low-carbon performance through the coordinated optimization of supply and demand resources. Ultimately, this study develops an integrated energy system model for low-carbon optimal operation, aimed at minimizing equipment investment, carbon emission costs, and operational and maintenance expenses. This model focuses on optimizing the load and supply distribution plans of the electrical system and addressing issues of load shedding and the curtailment of wind and solar power. Validation through three typical scenarios demonstrates that the proposed scheduling method effectively utilizes adjustable resources in the power system to achieve the goal of low-carbon economic dispatch.

Suggested Citation

  • Hongbin Sun & Hongyu Zou & Jingya Wen & Wende Ke & Lei Kou, 2024. "Optimal Scheduling Considering Carbon Capture and Demand Response under Uncertain Output Scenarios for Wind Energy," Sustainability, MDPI, vol. 16(3), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:970-:d:1324710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/970/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/970/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nwulu, Nnamdi I. & Xia, Xiaohua, 2017. "Optimal dispatch for a microgrid incorporating renewables and demand response," Renewable Energy, Elsevier, vol. 101(C), pages 16-28.
    2. Hwang Goh, Hui & Shi, Shuaiwei & Liang, Xue & Zhang, Dongdong & Dai, Wei & Liu, Hui & Yuong Wong, Shen & Agustiono Kurniawan, Tonni & Chen Goh, Kai & Leei Cham, Chin, 2022. "Optimal energy scheduling of grid-connected microgrids with demand side response considering uncertainty," Applied Energy, Elsevier, vol. 327(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    2. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    3. Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2024. "Optimal Power Dispatch for Maximum Energy Community Welfare by Considering Closed Distribution Systems and Renewable Sources," Energies, MDPI, vol. 17(18), pages 1-21, September.
    4. Vinay Kumar Jadoun & Nipun Sharma & Piyush Jha & Jayalakshmi N. S. & Hasmat Malik & Fausto Pedro Garcia Márquez, 2021. "Optimal Scheduling of Dynamic Pricing Based V2G and G2V Operation in Microgrid Using Improved Elephant Herding Optimization," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    5. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    6. Elattar, Ehab E., 2018. "Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources," Energy, Elsevier, vol. 159(C), pages 496-507.
    7. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    8. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    9. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Fernando Lezama & Ricardo Faia & Pedro Faria & Zita Vale, 2020. "Demand Response of Residential Houses Equipped with PV-Battery Systems: An Application Study Using Evolutionary Algorithms," Energies, MDPI, vol. 13(10), pages 1-18, May.
    11. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    12. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Krkoleva Mateska, Aleksandra & Borozan, Vesna & Krstevski, Petar & Taleski, Rubin, 2018. "Controllable load operation in microgrids using control scheme based on gossip algorithm," Applied Energy, Elsevier, vol. 210(C), pages 1336-1346.
    14. Wang, Shouxiang & Wang, Shaomin & Zhao, Qianyu & Dong, Shuai & Li, Hao, 2023. "Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand," Energy, Elsevier, vol. 269(C).
    15. Andrew Blohm & Jaden Crawford & Steven A. Gabriel, 2021. "Demand Response as a Real-Time, Physical Hedge for Retail Electricity Providers: The Electric Reliability Council of Texas Market Case Study," Energies, MDPI, vol. 14(4), pages 1-16, February.
    16. Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
    17. Elattar, Ehab E. & ElSayed, Salah K., 2019. "Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement," Energy, Elsevier, vol. 178(C), pages 598-609.
    18. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Harun Or Rashid Howlader & Akito Nakadomari & Tomonobu Senjyu, 2023. "Optimal Capacity and Operational Planning for Renewable Energy-Based Microgrid Considering Different Demand-Side Management Strategies," Energies, MDPI, vol. 16(10), pages 1-25, May.
    19. Zheng, Shunlin & Qi, Qi & Sun, Yi & Ai, Xin, 2023. "Integrated demand response considering substitute effect and time-varying response characteristics under incomplete information," Applied Energy, Elsevier, vol. 333(C).
    20. Heydarian-Forushani, Ehsan & Golshan, Mohamad Esmail Hamedani & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "A comprehensive linear model for demand response optimization problem," Energy, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:970-:d:1324710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.