IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p1350-d1333955.html
   My bibliography  Save this article

Vertical Variation in Temperature Sensitivity of Soil Organic Carbon Mineralization in Changbai Mountain, China: A Microcosm Study

Author

Listed:
  • Xue Liu

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China
    Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yifan Zhang

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China
    Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China)

  • Haitao Wu

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China
    Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China)

  • Dandan Liu

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China
    Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China)

  • Zhongsheng Zhang

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China
    Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China)

Abstract

Global warming may have a complex effect on soil carbon mineralization across mountain elevations. Elevational zonation governs the soil natural composition of mountain ecosystems due to different temperature conditions. Understanding the response of carbon mineralization to climate change, particularly the temperature sensitivity ( Q 10 ), is crucial for assessing the effects within mountain vertical zones. Despite this, the spatial variation and influencing factors of organic carbon mineralization at these zones remain unclear. We conducted a microcosm study in Changbai Mountain, Northeast China, to examine the response of soil carbon mineralization to warming across six different elevations (1000, 1400, 1600, 1800, 2000, and 2200 m). The soil samples were incubated at 5 °C, 15 °C, and 25 °C for 71 days. The results showed a significant elevation-dependent increase in the rate of soil organic carbon mineralization ( C min ), with the birch forest exhibiting the highest values. Q 10 varied across elevations, with the highest value (1.57) in the coniferous forest (1400 m), and the lowest (1.32) in the tundra (2200 m). The potential of organic carbon mineralization ( C 0 ) demonstrated an increasing trend from 5 °C to 25 °C across the six elevations. Elevation and soil properties, especially pH, bulk density (BD), and dissolved organic carbon (DOC), emerged as critical factors influencing organic carbon mineralization; notably, elevation played a crucial role. In summary, our findings highlight the common regulatory role of elevation and soil properties in soil carbon mineralization dynamics within the vertical zones. Future research should pay attention to the distinctive features of vegetation zones to analyze how mountain carbon pool function responds to global climate change.

Suggested Citation

  • Xue Liu & Yifan Zhang & Haitao Wu & Dandan Liu & Zhongsheng Zhang, 2024. "Vertical Variation in Temperature Sensitivity of Soil Organic Carbon Mineralization in Changbai Mountain, China: A Microcosm Study," Sustainability, MDPI, vol. 16(3), pages 1-14, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1350-:d:1333955
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/1350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/1350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sébastien Fontaine & Sébastien Barot & Pierre Barré & Nadia Bdioui & Bruno Mary & Cornelia Rumpel, 2007. "Stability of organic carbon in deep soil layers controlled by fresh carbon supply," Nature, Nature, vol. 450(7167), pages 277-280, November.
    2. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenghu Zhou & Chengjie Ren & Chuankuan Wang & Manuel Delgado-Baquerizo & Yiqi Luo & Zhongkui Luo & Zhenggang Du & Biao Zhu & Yuanhe Yang & Shuo Jiao & Fazhu Zhao & Andong Cai & Gaihe Yang & Gehong We, 2024. "Global turnover of soil mineral-associated and particulate organic carbon," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    4. S. Chersich & K. Rejšek & V. Vranová & M. Bordoni & C. Meisina, 2015. "Climate change impacts on the Alpine ecosystem: an overview with focus on the soil," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 61(11), pages 496-514.
    5. Mingming Wang & Xiaowei Guo & Shuai Zhang & Liujun Xiao & Umakant Mishra & Yuanhe Yang & Biao Zhu & Guocheng Wang & Xiali Mao & Tian Qian & Tong Jiang & Zhou Shi & Zhongkui Luo, 2022. "Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Ying Chen & Wenkuan Qin & Qiufang Zhang & Xudong Wang & Jiguang Feng & Mengguang Han & Yanhui Hou & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Margaret S. Torn & Biao Zhu, 2024. "Whole-soil warming leads to substantial soil carbon emission in an alpine grassland," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Braakhekke, Maarten C. & Beer, Christian & Hoosbeek, Marcel R. & Reichstein, Markus & Kruijt, Bart & Schrumpf, Marion & Kabat, Pavel, 2011. "SOMPROF: A vertically explicit soil organic matter model," Ecological Modelling, Elsevier, vol. 222(10), pages 1712-1730.
    8. Xiaochang Wu & Huayong Zhang & Zhongyu Wang & Wang Tian & Zhao Liu, 2024. "Patterns of Soil Stoichiometry Driven by Mixed Tree Species Proportions in Boreal Forest," Sustainability, MDPI, vol. 16(19), pages 1-13, October.
    9. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    10. Virna Estefania Moran-Rodas & Verena Preusse & Christine Wachendorf, 2022. "Agricultural Management Practices and Decision-Making in View of Soil Organic Matter in the Urbanizing Region of Bangalore," Sustainability, MDPI, vol. 14(10), pages 1-27, May.
    11. S . K. Oni & F. Mieres & M. N. Futter & H. Laudon, 2017. "Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest," Climatic Change, Springer, vol. 143(1), pages 27-41, July.
    12. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    13. Zeyang Zhao & Peng Dong & Bo Fu & Dan Wu & Zhizhong Zhao, 2024. "Labile Fraction of Organic Carbon in Soils from Natural and Plantation Forests of Tropical China," Sustainability, MDPI, vol. 16(17), pages 1-12, September.
    14. Li Gao & Mingjing Huang & Wuping Zhang & Lei Qiao & Guofang Wang & Xumeng Zhang, 2021. "Comparative Study on Spatial Digital Mapping Methods of Soil Nutrients Based on Different Geospatial Technologies," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    15. Raitis Normunds Meļņiks & Arta Bārdule & Aldis Butlers & Jordane Champion & Santa Kalēja & Ilona Skranda & Guna Petaja & Andis Lazdiņš, 2023. "Carbon Losses from Topsoil in Abandoned Peat Extraction Sites Due to Ground Subsidence and Erosion," Land, MDPI, vol. 12(12), pages 1-17, December.
    16. Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
    17. Husnain Husnain & I. Wigena & Ai Dariah & Setiari Marwanto & Prihasto Setyanto & Fahmuddin Agus, 2014. "CO 2 emissions from tropical drained peat in Sumatra, Indonesia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 845-862, August.
    18. Tong-Hui Wu & Yu-Fu Hu & Yan-Yan Zhang & Xiang-Yang Shu & Ze-Peng Yang & Wei Zhou & Cheng-Yi Huang & Jie Li & Zhi Li & Jia He & Ying Yu, 2022. "Changes in soil organic carbon and its fractions under grassland reclamation in alpine-cold soils, China," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(4), pages 211-221.
    19. Nikolay Gorbach & Viktor Startsev & Anton Mazur & Evgeniy Milanovskiy & Anatoly Prokushkin & Alexey Dymov, 2022. "Simulation of Smoldering Combustion of Organic Horizons at Pine and Spruce Boreal Forests with Lab-Heating Experiments," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    20. Yuanbo Cao & Huijie Xiao & Baitian Wang & Yunlong Zhang & Honghui Wu & Xijing Wang & Yadong Yang & Tingting Wei, 2021. "Soil Respiration May Overestimate or Underestimate in Forest Ecosystems," Sustainability, MDPI, vol. 13(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1350-:d:1333955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.