IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p850-d1322078.html
   My bibliography  Save this article

Continuous Hydrothermal Carbonization of Olive Pomace and Orange Peels for the Production of Pellets as an Intermediate Energy Carrier

Author

Listed:
  • Douwe S. Zijlstra

    (TNO, Energy and Materials Transition, Biobased and Circular Technologies, Westerduinweg 3, 1755 LE Petten, The Netherlands)

  • Mark Visser

    (TNO, Energy and Materials Transition, Biobased and Circular Technologies, Westerduinweg 3, 1755 LE Petten, The Netherlands)

  • Esther Cobussen-Pool

    (TNO, Energy and Materials Transition, Biobased and Circular Technologies, Westerduinweg 3, 1755 LE Petten, The Netherlands)

  • Dennis J. Slort

    (TNO, Energy and Materials Transition, Biobased and Circular Technologies, Westerduinweg 3, 1755 LE Petten, The Netherlands)

  • Pavlina Nanou

    (TORWASH BV, Welgelegen 1, 1754 JK Burgerbrug, The Netherlands)

  • Jan R. Pels

    (TORWASH BV, Welgelegen 1, 1754 JK Burgerbrug, The Netherlands)

  • Heather E. Wray

    (TNO, Energy and Materials Transition, Biobased and Circular Technologies, Westerduinweg 3, 1755 LE Petten, The Netherlands)

Abstract

The ever-increasing volumes of food waste generated and the associated environmental issues require the development of new processing methods for these difficult waste streams. One of the technologies that can treat these waste streams directly is hydrothermal carbonization. In this work, olive pomace and orange peels were treated via a mild hydrothermal carbonization process (TORWASH ® ) in a continuous-flow pilot plant. For olive pomace, a solid yield of 46 wt% and a dry matter content of 58% for the solid press cakes were obtained during continuous operation for 18 days. For orange peels, the values were lower with 31 wt% solid yield and a 42% dry matter content during 28 days of continuous operation. These values corresponded fully with initial laboratory-scale batch experiments, showing the successful transformation from batch to continuous processing. The obtained hydrochar from both feedstocks showed an increase in higher heating value (HHV) and a significant reduction in ash content. Pellets produced from the solids met the requirements for industrial use, demonstrating a large increase in the deformation temperature and a significant reduction in the potassium and chlorine content compared to the original feedstock. These results indicate the excellent potential of these pellets for combustion applications.

Suggested Citation

  • Douwe S. Zijlstra & Mark Visser & Esther Cobussen-Pool & Dennis J. Slort & Pavlina Nanou & Jan R. Pels & Heather E. Wray, 2024. "Continuous Hydrothermal Carbonization of Olive Pomace and Orange Peels for the Production of Pellets as an Intermediate Energy Carrier," Sustainability, MDPI, vol. 16(2), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:850-:d:1322078
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/850/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/850/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
    2. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    3. Trubetskaya, Anna & Grams, Jacek & Leahy, James J. & Johnson, Robert & Gallagher, Paul & Monaghan, Rory F.D. & Kwapinska, Marzena, 2020. "The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction," Renewable Energy, Elsevier, vol. 160(C), pages 998-1011.
    4. Magdziarz, Aneta & Mlonka-Mędrala, Agata & Sieradzka, Małgorzata & Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy A. & Brem, Gerrit & Niedzwiecki, Łukasz & Pawlak-Kruczek, Halina, 2021. "Multiphase analysis of hydrochars obtained by anaerobic digestion of municipal solid waste organic fraction," Renewable Energy, Elsevier, vol. 175(C), pages 108-118.
    5. Bartosz Matyjewicz & Kacper Świechowski & Jacek A. Koziel & Andrzej Białowiec, 2020. "Proof-of-Concept of High-Pressure Torrefaction for Improvement of Pelletized Biomass Fuel Properties and Process Cost Reduction," Energies, MDPI, vol. 13(18), pages 1-27, September.
    6. Krystian Krochmalny & Halina Pawlak-Kruczek & Norbert Skoczylas & Mateusz Kudasik & Aleksandra Gajda & Renata Gnatowska & Monika Serafin-Tkaczuk & Tomasz Czapka & Amit K. Jaiswal & Vishwajeet & Amit A, 2022. "Use of Hydrothermal Carbonization and Cold Atmospheric Plasma for Surface Modification of Brewer’s Spent Grain and Activated Carbon," Energies, MDPI, vol. 15(12), pages 1-11, June.
    7. Ayala-Cortés, Alejandro & Arcelus-Arrillaga, Pedro & Millan, Marcos & Okoye, Patrick U. & Arancibia-Bulnes, Camilo A. & Pacheco-Catalán, Daniella Esperanza & Villafán-Vidales, Heidi Isabel, 2022. "Solar hydrothermal processing of agave bagasse: Insights on the effect of operational parameters," Renewable Energy, Elsevier, vol. 192(C), pages 14-23.
    8. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    9. Gerrit Ralf Surup & Hamideh Kaffash & Yan Ma & Anna Trubetskaya & Johan Berg Pettersen & Merete Tangstad, 2022. "Life Cycle Based Climate Emissions of Charcoal Conditioning Routes for the Use in the Ferro-Alloy Production," Energies, MDPI, vol. 15(11), pages 1-28, May.
    10. Petrovič, Aleksandra & Cenčič Predikaka, Tjaša & Parlov Vuković, Jelena & Jednačak, Tomislav & Hribernik, Silvo & Vohl, Sabina & Urbancl, Danijela & Tišma, Marina & Čuček, Lidija, 2024. "Sustainable hydrothermal co-carbonization of residues from the vegetable oil industry and sewage sludge: Hydrochar production and liquid fraction valorisation," Energy, Elsevier, vol. 307(C).
    11. Tomasz Hardy & Amit Arora & Halina Pawlak-Kruczek & Wojciech Rafajłowicz & Jerzy Wietrzych & Łukasz Niedźwiecki & Vishwajeet & Krzysztof Mościcki, 2021. "Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review," Energies, MDPI, vol. 14(21), pages 1-15, November.
    12. Wang, Ruikun & Liu, Senyang & Xue, Qiao & Lin, Kai & Yin, Qianqian & Zhao, Zhenghui, 2022. "Analysis and prediction of characteristics for solid product obtained by hydrothermal carbonization of biomass components," Renewable Energy, Elsevier, vol. 183(C), pages 575-585.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:850-:d:1322078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.