IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p731-d1319100.html
   My bibliography  Save this article

A Survey of Commercial and Industrial Demand Response Flexibility with Energy Storage Systems and Renewable Energy

Author

Listed:
  • Roksana Yasmin

    (Centre for New Energy Transition Research (CfNETR), Federation University Australia, Mt. Helen, VIC 3353, Australia)

  • B. M. Ruhul Amin

    (Centre for New Energy Transition Research (CfNETR), Federation University Australia, Mt. Helen, VIC 3353, Australia)

  • Rakibuzzaman Shah

    (Centre for New Energy Transition Research (CfNETR), Federation University Australia, Mt. Helen, VIC 3353, Australia)

  • Andrew Barton

    (Future Regions Research Centre, Federation University Australia, Mt. Helen, VIC 3806, Australia)

Abstract

The transition from traditional fuel-dependent energy systems to renewable energy-based systems has been extensively embraced worldwide. Demand-side flexibility is essential to support the power grid with carbon-free generation (e.g., solar, wind.) in an intermittent nature. As extensive energy consumers, commercial and industrial (C&I) consumers can play a key role by extending their flexibility and participating in demand response. Onsite renewable generation by consumers can reduce the consumption from the grid, while energy storage systems (ESSs) can support variable generation and shift demand by storing energy for later use. Both technologies can increase the flexibility and benefit by integrating with the demand response. However, a lack of knowledge about the applicability of increasing flexibility hinders the active participation of C&I consumers in demand response programs. This survey paper provides an overview of demand response and energy storage systems in this context following a methodology of a step-by-step literature review covering the period from 2013 to 2023. The literature review focuses on the application of energy storage systems and onsite renewable generation integrated with demand response for C&I consumers and is presented with an extensive analysis. This survey also examines the demand response participation and potential of wastewater treatment plants. The extended research on the wastewater treatment plant identifies the potential opportunities of coupling biogas with PV, extracting the thermal energy and onsite hydrogen production. Finally, the survey analysis is summarised, followed by critical recommendations for future research.

Suggested Citation

  • Roksana Yasmin & B. M. Ruhul Amin & Rakibuzzaman Shah & Andrew Barton, 2024. "A Survey of Commercial and Industrial Demand Response Flexibility with Energy Storage Systems and Renewable Energy," Sustainability, MDPI, vol. 16(2), pages 1-41, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:731-:d:1319100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    2. Wang, Xiaonan & El-Farra, Nael H. & Palazoglu, Ahmet, 2017. "Optimal scheduling of demand responsive industrial production with hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 100(C), pages 53-64.
    3. Ruiz Duarte, José Luis & Fan, Neng & Jin, Tongdan, 2020. "Multi-process production scheduling with variable renewable integration and demand response," European Journal of Operational Research, Elsevier, vol. 281(1), pages 186-200.
    4. Yin, Rongxin & Kara, Emre C. & Li, Yaping & DeForest, Nicholas & Wang, Ke & Yong, Taiyou & Stadler, Michael, 2016. "Quantifying flexibility of commercial and residential loads for demand response using setpoint changes," Applied Energy, Elsevier, vol. 177(C), pages 149-164.
    5. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    6. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    7. Arteconi, Alessia & Ciarrocchi, Eleonora & Pan, Quanwen & Carducci, Francesco & Comodi, Gabriele & Polonara, Fabio & Wang, Ruzhu, 2017. "Thermal energy storage coupled with PV panels for demand side management of industrial building cooling loads," Applied Energy, Elsevier, vol. 185(P2), pages 1984-1993.
    8. Xiaoyang Shu & Raman Kumar & Rajeev Kumar Saha & Nikhil Dev & Željko Stević & Shubham Sharma & Mohammad Rafighi, 2023. "Sustainability Assessment of Energy Storage Technologies Based on Commercialization Viability: MCDM Model," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    9. Pommeret, Aude & Schubert, Katheline, 2022. "Optimal energy transition with variable and intermittent renewable electricity generation," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    10. Brok, Niclas Brabrand & Munk-Nielsen, Thomas & Madsen, Henrik & Stentoft, Peter A., 2020. "Unlocking energy flexibility of municipal wastewater aeration using predictive control to exploit price differences in power markets," Applied Energy, Elsevier, vol. 280(C).
    11. Nolan, Sheila & O’Malley, Mark, 2015. "Challenges and barriers to demand response deployment and evaluation," Applied Energy, Elsevier, vol. 152(C), pages 1-10.
    12. Yunjie Rao & Xue Cui & Xuyue Zou & Liming Ying & Pingzheng Tong & Junlin Li, 2023. "Research on Distributed Energy Storage Planning-Scheduling Strategy of Regional Power Grid Considering Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-14, October.
    13. Ali, Syed Muhammad Hassan & Lenzen, Manfred & Sack, Fabian & Yousefzadeh, Moslem, 2020. "Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids," Applied Energy, Elsevier, vol. 268(C).
    14. Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika & Rautiainen, Antti, 2023. "Toward residential flexibility—Consumer willingness to enroll household loads in demand response," Applied Energy, Elsevier, vol. 342(C).
    15. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Verbeke, Stijn & Audenaert, Amaryllis, 2018. "Thermal inertia in buildings: A review of impacts across climate and building use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2300-2318.
    17. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).
    18. Bao, Yi & Xu, Jian & Feng, Wei & Sun, Yuanzhang & Liao, Siyang & Yin, Rongxin & Jiang, Yazhou & Jin, Ming & Marnay, Chris, 2019. "Provision of secondary frequency regulation by coordinated dispatch of industrial loads and thermal power plants," Applied Energy, Elsevier, vol. 241(C), pages 302-312.
    19. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    20. Eissa, M.M., 2019. "Developing incentive demand response with commercial energy management system (CEMS) based on diffusion model, smart meters and new communication protocol," Applied Energy, Elsevier, vol. 236(C), pages 273-292.
    21. Maheshwari, Arpit & Paterakis, Nikolaos G. & Santarelli, Massimo & Gibescu, Madeleine, 2020. "Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model," Applied Energy, Elsevier, vol. 261(C).
    22. Heffron, Raphael & Körner, Marc-Fabian & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2020. "Industrial demand-side flexibility: A key element of a just energy transition and industrial development," Applied Energy, Elsevier, vol. 269(C).
    23. Mattia Cottes & Matia Mainardis & Daniele Goi & Patrizia Simeoni, 2020. "Demand-Response Application in Wastewater Treatment Plants Using Compressed Air Storage System: A Modelling Approach," Energies, MDPI, vol. 13(18), pages 1-15, September.
    24. Desta, Alemayehu Addisu & Badis, Hakim & George, Laurent, 2018. "Demand response scheduling in industrial asynchronous production lines constrained by available power and production rate," Applied Energy, Elsevier, vol. 230(C), pages 1414-1424.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    2. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
    5. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    6. Lynch, Muireann Á. & Nolan, Sheila & Devine, Mel T. & O’Malley, Mark, 2019. "The impacts of demand response participation in capacity markets," Applied Energy, Elsevier, vol. 250(C), pages 444-451.
    7. Rusche, Simon & Weissflog., Jan & Wenninger, Simon & Häckel, Björn, 2023. "How flexible are energy flexibilities? Developing a flexibility score for revenue and risk analysis in industrial demand-side management," Applied Energy, Elsevier, vol. 345(C).
    8. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    9. Fatras, Nicolas & Ma, Zheng & Jørgensen, Bo Nørregaard, 2022. "Process-to-market matrix mapping: A multi-criteria evaluation framework for industrial processes’ electricity market participation feasibility," Applied Energy, Elsevier, vol. 313(C).
    10. Chiara Magni & Robbe Peeters & Sylvain Quoilin & Alessia Arteconi, 2024. "Assessing the Flexibility Potential of Industrial Heat–Electricity Sector Coupling through High-Temperature Heat Pumps: The Case Study of Belgium," Energies, MDPI, vol. 17(2), pages 1-14, January.
    11. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    12. Ziras, Charalampos & Heinrich, Carsten & Pertl, Michael & Bindner, Henrik W., 2019. "Experimental flexibility identification of aggregated residential thermal loads using behind-the-meter data," Applied Energy, Elsevier, vol. 242(C), pages 1407-1421.
    13. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Belusko, Martin & Boer, Dieter & Cabeza, Luisa F., 2018. "Optimized demand side management (DSM) of peak electricity demand by coupling low temperature thermal energy storage (TES) and solar PV," Applied Energy, Elsevier, vol. 211(C), pages 604-616.
    14. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    15. Förster, Robert & Harding, Sebastian & Buhl, Hans Ulrich, 2024. "Unleashing the economic and ecological potential of energy flexibility: Attractiveness of real-time electricity tariffs in energy crises," Energy Policy, Elsevier, vol. 185(C).
    16. Al-Dahidi, Sameer & Alrbai, Mohammad & Al-Ghussain, Loiy & Alahmer, Ali, 2024. "Maximizing energy efficiency in wastewater treatment plants: A data-driven approach for waste heat recovery and an economic analysis using Organic Rankine Cycle and thermal energy storage," Applied Energy, Elsevier, vol. 362(C).
    17. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    18. Zhu, Jie & Niu, Jide & Tian, Zhe & Zhou, Ruoyu & Ye, Chuang, 2022. "Rapid quantification of demand response potential of building HAVC system via data-driven model," Applied Energy, Elsevier, vol. 325(C).
    19. Luo, Xi & Liu, Yanfeng & Feng, Pingan & Gao, Yuan & Guo, Zhenxiang, 2021. "Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side," Applied Energy, Elsevier, vol. 294(C).
    20. Amrollahi, Mohammad Hossein & Bathaee, Seyyed Mohammad Taghi, 2017. "Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response," Applied Energy, Elsevier, vol. 202(C), pages 66-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:731-:d:1319100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.