IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4780-d413098.html
   My bibliography  Save this article

Demand-Response Application in Wastewater Treatment Plants Using Compressed Air Storage System: A Modelling Approach

Author

Listed:
  • Mattia Cottes

    (Department Polytechnic of Engineering and Architecture (DPIA), University of Udine, Via delle Scienze 208, 33100 Udine, Italy)

  • Matia Mainardis

    (Department Polytechnic of Engineering and Architecture (DPIA), University of Udine, Via delle Scienze 208, 33100 Udine, Italy)

  • Daniele Goi

    (Department Polytechnic of Engineering and Architecture (DPIA), University of Udine, Via delle Scienze 208, 33100 Udine, Italy)

  • Patrizia Simeoni

    (Department Polytechnic of Engineering and Architecture (DPIA), University of Udine, Via delle Scienze 208, 33100 Udine, Italy)

Abstract

Wastewater treatment plants (WWTPs) are known to be one of the most energy-intensive industrial sectors. In this work, demand response was applied to the biological phase of wastewater treatment to reduce plant electricity cost, considering that the daily peak in flowrate typically coincides with the maximum electricity price. Compressed air storage system, composed of a compressor and an air storage tank, was proposed to allow energy cost reduction. A multi-objective modelling approach was applied by analyzing different scenarios (with and without anaerobic digestion, AD), considering both plant characteristics (in terms of treated flowrate and influent chemical oxygen demand, COD, concentration) and storage system properties (volume, air pressure), together with the current Italian market economic conditions. The results highlight that air tank volume has a strong positive influence on the obtainable economic savings, with a less significant impact held by air pressure, COD concentration and flowrate. In addition, biogas exploitation from AD led to an improvement in economic indices. The developed model is highly flexible and can be applied to different WWTPs and market conditions.

Suggested Citation

  • Mattia Cottes & Matia Mainardis & Daniele Goi & Patrizia Simeoni, 2020. "Demand-Response Application in Wastewater Treatment Plants Using Compressed Air Storage System: A Modelling Approach," Energies, MDPI, vol. 13(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4780-:d:413098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4780/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4780/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abbaspour, M. & Satkin, M. & Mohammadi-Ivatloo, B. & Hoseinzadeh Lotfi, F. & Noorollahi, Y., 2013. "Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)," Renewable Energy, Elsevier, vol. 51(C), pages 53-59.
    2. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    3. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    4. Gude, Veera Gnaneswar, 2015. "Energy and water autarky of wastewater treatment and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 52-68.
    5. Simeoni, Patrizia & Nardin, Gioacchino & Ciotti, Gellio, 2018. "Planning and design of sustainable smart multi energy systems. The case of a food industrial district in Italy," Energy, Elsevier, vol. 163(C), pages 443-456.
    6. Zupančič, G.D. & Roš, M., 2003. "Heat and energy requirements in thermophilic anaerobic sludge digestion," Renewable Energy, Elsevier, vol. 28(14), pages 2255-2267.
    7. Panepinto, Deborah & Fiore, Silvia & Zappone, Mariantonia & Genon, Giuseppe & Meucci, Lorenza, 2016. "Evaluation of the energy efficiency of a large wastewater treatment plant in Italy," Applied Energy, Elsevier, vol. 161(C), pages 404-411.
    8. Simeoni, Patrizia & Ciotti, Gellio & Cottes, Mattia & Meneghetti, Antonella, 2019. "Integrating industrial waste heat recovery into sustainable smart energy systems," Energy, Elsevier, vol. 175(C), pages 941-951.
    9. Dincer, Ibrahim & Acar, Canan, 2017. "Smart energy systems for a sustainable future," Applied Energy, Elsevier, vol. 194(C), pages 225-235.
    10. Beatrice Castellani & Andrea Presciutti & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2015. "Experimental Investigation on the Effect of Phase Change Materials on Compressed Air Expansion in CAES Plants," Sustainability, MDPI, vol. 7(8), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roksana Yasmin & B. M. Ruhul Amin & Rakibuzzaman Shah & Andrew Barton, 2024. "A Survey of Commercial and Industrial Demand Response Flexibility with Energy Storage Systems and Renewable Energy," Sustainability, MDPI, vol. 16(2), pages 1-41, January.
    2. Ihsan Hamawand, 2023. "Energy Consumption in Water/Wastewater Treatment Industry—Optimisation Potentials," Energies, MDPI, vol. 16(5), pages 1-3, March.
    3. Mattia Cottes & Matia Mainardis & Patrizia Simeoni, 2023. "Assessing the Techno-Economic Feasibility of Waste Electric and Electronic Equipment Treatment Plant: A Multi-Decisional Modeling Approach," Sustainability, MDPI, vol. 15(23), pages 1-16, November.
    4. Khah, Mohammad Vahabi & Zahedi, Rahim & Mousavi, Mohammad Sadegh & Ahmadi, Abolfazl, 2023. "Forecasting renewable energy utilization by Iran's water and wastewater industries," Utilities Policy, Elsevier, vol. 82(C).
    5. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Piotr Bugajski & Elwira Nowobilska-Majewska & Michał Majewski, 2021. "The Impact of Atmospheric Precipitation on Wastewater Volume Flowing into the Wastewater Treatment Plant in Nowy Targ (Poland) in Terms of Treatment Costs," Energies, MDPI, vol. 14(13), pages 1-12, June.
    7. Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
    8. Renata Rodrigues Lautert & Wagner da Silva Brignol & Luciane Neves Canha & Olatunji Matthew Adeyanju & Vinícius Jacques Garcia, 2022. "A Flexible-Reliable Operation Model of Storage and Distributed Generation in a Biogas Power Plant," Energies, MDPI, vol. 15(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krieg, Thomas & Enzmann, Franziska & Sell, Dieter & Schrader, Jens & Holtmann, Dirk, 2017. "Simulation of the current generation of a microbial fuel cell in a laboratory wastewater treatment plant," Applied Energy, Elsevier, vol. 195(C), pages 942-949.
    2. Ali, Syed Muhammad Hassan & Lenzen, Manfred & Sack, Fabian & Yousefzadeh, Moslem, 2020. "Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids," Applied Energy, Elsevier, vol. 268(C).
    3. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    4. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    6. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    7. Guven, Huseyin & Ersahin, Mustafa Evren & Dereli, Recep Kaan & Ozgun, Hale & Isik, Isa & Ozturk, Izzet, 2019. "Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal wastewater and food waste," Energy, Elsevier, vol. 172(C), pages 1027-1036.
    8. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    9. Molinos-Senante, Maria & Maziotis, Alexandros, 2022. "Evaluation of energy efficiency of wastewater treatment plants: The influence of the technology and aging factors," Applied Energy, Elsevier, vol. 310(C).
    10. Wu, Xiong & Li, Nailiang & He, Mingkang & Wang, Xiuli & Ma, Song & Cao, Jingjing, 2022. "Risk-constrained day-ahead scheduling for gravity energy storage system and wind turbine based on IGDT," Renewable Energy, Elsevier, vol. 185(C), pages 904-915.
    11. Knudsen, Brage Rugstad & Rohde, Daniel & Kauko, Hanne, 2021. "Thermal energy storage sizing for industrial waste-heat utilization in district heating: A model predictive control approach," Energy, Elsevier, vol. 234(C).
    12. Zohrabian, Angineh & Sanders, Kelly T., 2021. "Emitting less without curbing usage? Exploring greenhouse gas mitigation strategies in the water industry through load shifting," Applied Energy, Elsevier, vol. 298(C).
    13. Vojtěch Zejda & Vítězslav Máša & Šárka Václavková & Pavel Skryja, 2020. "A Novel Check-List Strategy to Evaluate the Potential of Operational Improvements in Wastewater Treatment Plants," Energies, MDPI, vol. 13(19), pages 1-21, September.
    14. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Luo, Li & Dzakpasu, Mawuli & Yang, Baichuan & Zhang, Wushou & Yang, Yahong & Wang, Xiaochang C., 2019. "A novel index of total oxygen demand for the comprehensive evaluation of energy consumption for urban wastewater treatment," Applied Energy, Elsevier, vol. 236(C), pages 253-261.
    16. Odabaş Baş, Gözde & Aydınalp Köksal, Merih, 2022. "Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants," Renewable Energy, Elsevier, vol. 196(C), pages 579-597.
    17. Ilaria Zambon & Massimo Cecchini & Enrico Maria Mosconi & Andrea Colantoni, 2019. "Revolutionizing Towards Sustainable Agricultural Systems: The Role of Energy," Energies, MDPI, vol. 12(19), pages 1-11, September.
    18. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    19. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    20. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4780-:d:413098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.