IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v100y2017icp53-64.html
   My bibliography  Save this article

Optimal scheduling of demand responsive industrial production with hybrid renewable energy systems

Author

Listed:
  • Wang, Xiaonan
  • El-Farra, Nael H.
  • Palazoglu, Ahmet

Abstract

This paper presents a methodology for the application of real-time optimization techniques to the problem of optimally scheduling and managing the interaction between electricity providers and users so that the grid and loads can come to an agreement to achieve optimal economic performance. The energy flows in typical industrial processes (e.g., chlor-alkali production) are simulated to illustrate day-ahead scheduling and contract following behaviors, as well as real-time demand response management. A communication and incentive scheme is first proposed for the complete energy scheduling process. Energy management strategies are then developed to realize the objectives of meeting production requirements while minimizing the overall operating and environmental costs through producing, purchasing and selling electricity. The energy contract following and demand response policies are also integrated into the proposed methodology, which appear to reduce uncertainties and help maintain the reliability of the grid.

Suggested Citation

  • Wang, Xiaonan & El-Farra, Nael H. & Palazoglu, Ahmet, 2017. "Optimal scheduling of demand responsive industrial production with hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 100(C), pages 53-64.
  • Handle: RePEc:eee:renene:v:100:y:2017:i:c:p:53-64
    DOI: 10.1016/j.renene.2016.05.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811630461X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Wencong & Huang, Alex Q., 2014. "A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers," Applied Energy, Elsevier, vol. 119(C), pages 341-350.
    2. Cappers, Peter & Goldman, Charles & Kathan, David, 2010. "Demand response in U.S. electricity markets: Empirical evidence," Energy, Elsevier, vol. 35(4), pages 1526-1535.
    3. Green, Richard, 1999. "The Electricity Contract Market in England and Wales," Journal of Industrial Economics, Wiley Blackwell, vol. 47(1), pages 107-124, March.
    4. Wang, Xiaonan & Palazoglu, Ahmet & El-Farra, Nael H., 2015. "Operational optimization and demand response of hybrid renewable energy systems," Applied Energy, Elsevier, vol. 143(C), pages 324-335.
    5. Richard Green, 1999. "The Electricity Contract Market in England and Wales," Journal of Industrial Economics, Wiley Blackwell, vol. 47(1), pages 107-124, March.
    6. Bae, Mungyu & Kim, Hwantae & Kim, Eugene & Chung, Albert Yongjoon & Kim, Hwangnam & Roh, Jae Hyung, 2014. "Toward electricity retail competition: Survey and case study on technical infrastructure for advanced electricity market system," Applied Energy, Elsevier, vol. 133(C), pages 252-273.
    7. Broeren, M.L.M. & Saygin, D. & Patel, M.K., 2014. "Forecasting global developments in the basic chemical industry for environmental policy analysis," Energy Policy, Elsevier, vol. 64(C), pages 273-287.
    8. Reddy, K.S. & Kumar, Madhusudan & Mallick, T.K. & Sharon, H. & Lokeswaran, S., 2014. "A review of Integration, Control, Communication and Metering (ICCM) of renewable energy based smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 180-192.
    9. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Xi & Liu, Yanfeng & Feng, Pingan & Gao, Yuan & Guo, Zhenxiang, 2021. "Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side," Applied Energy, Elsevier, vol. 294(C).
    2. Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Li, Yinan & Yang, Wentao & He, Ping & Chen, Chang & Wang, Xiaonan, 2019. "Design and management of a distributed hybrid energy system through smart contract and blockchain," Applied Energy, Elsevier, vol. 248(C), pages 390-405.
    4. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    5. Sgouridis, Sgouris & Ali, Mohamed & Sleptchenko, Andrei & Bouabid, Ali & Ospina, Gustavo, 2021. "Aluminum smelters in the energy transition: Optimal configuration and operation for renewable energy integration in high insolation regions," Renewable Energy, Elsevier, vol. 180(C), pages 937-953.
    6. Noor, Sana & Yang, Wentao & Guo, Miao & van Dam, Koen H. & Wang, Xiaonan, 2018. "Energy Demand Side Management within micro-grid networks enhanced by blockchain," Applied Energy, Elsevier, vol. 228(C), pages 1385-1398.
    7. Caro-Ruiz, C. & Lombardi, P. & Richter, M. & Pelzer, A. & Komarnicki, P. & Pavas, A. & Mojica-Nava, E., 2019. "Coordination of optimal sizing of energy storage systems and production buffer stocks in a net zero energy factory," Applied Energy, Elsevier, vol. 238(C), pages 851-862.
    8. Purkayastha, Sagar N. & Chen, Yujun & Gates, Ian D. & Trifkovic, Milana, 2020. "A kelly criterion based optimal scheduling of a microgrid on a steam-assisted gravity drainage (SAGD) facility," Energy, Elsevier, vol. 204(C).
    9. Otashu, Joannah I. & Baldea, Michael, 2020. "Scheduling chemical processes for frequency regulation," Applied Energy, Elsevier, vol. 260(C).
    10. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    11. Roksana Yasmin & B. M. Ruhul Amin & Rakibuzzaman Shah & Andrew Barton, 2024. "A Survey of Commercial and Industrial Demand Response Flexibility with Energy Storage Systems and Renewable Energy," Sustainability, MDPI, vol. 16(2), pages 1-41, January.
    12. Gulnar Shaimardanovna Kaliakparova & Y?lena Evgenevna Gridneva & Sara Sarsebekovna Assanova & Sandugash Babagalikyzy Sauranbay & Abdizhapar Djumanovich Saparbayev, 2020. "International Economic Cooperation of Central Asian Countries on Energy Efficiency and Use of Renewable Energy Sources," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 539-545.
    13. Kotur, Dimitrije & Đurišić, Željko, 2017. "Optimal spatial and temporal demand side management in a power system comprising renewable energy sources," Renewable Energy, Elsevier, vol. 108(C), pages 533-547.
    14. Wang, Huilong & Wang, Shengwei, 2021. "A disturbance compensation enhanced control strategy of HVAC systems for improved building indoor environment control when providing power grid frequency regulation," Renewable Energy, Elsevier, vol. 169(C), pages 1330-1342.
    15. Lim, Kai Zhuo & Lim, Kang Hui & Wee, Xian Bin & Li, Yinan & Wang, Xiaonan, 2020. "Optimal allocation of energy storage and solar photovoltaic systems with residential demand scheduling," Applied Energy, Elsevier, vol. 269(C).
    16. Desta, Alemayehu Addisu & Badis, Hakim & George, Laurent, 2018. "Demand response scheduling in industrial asynchronous production lines constrained by available power and production rate," Applied Energy, Elsevier, vol. 230(C), pages 1414-1424.
    17. Nirbheram, Joshi Sukhdev & Mahesh, Aeidapu & Bhimaraju, Ambati, 2023. "Techno-economic analysis of grid-connected hybrid renewable energy system adapting hybrid demand response program and novel energy management strategy," Renewable Energy, Elsevier, vol. 212(C), pages 1-16.
    18. Chen, Y. & Trifkovic, M., 2018. "Optimal scheduling of a microgrid in a volatile electricity market environment: Portfolio optimization approach," Applied Energy, Elsevier, vol. 226(C), pages 703-712.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin F. Hobbs & Fieke A.M. Rijkers & Maroeska G. Boots, 2005. "The More Cooperation, The More Competition? A Cournot Analysis of the Benefits of Electric Market Coupling," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 69-98.
    2. de Bragança, Gabriel Godofredo Fiuza & Daglish, Toby, 2017. "Investing in vertical integration: electricity retail market participation," Energy Economics, Elsevier, vol. 67(C), pages 355-365.
    3. Liski, Matti & Montero, Juan-Pablo, 2014. "Forward trading in exhaustible-resource oligopoly," Resource and Energy Economics, Elsevier, vol. 37(C), pages 122-146.
    4. Andrew Sweeting, 2007. "Market Power In The England And Wales Wholesale Electricity Market 1995-2000," Economic Journal, Royal Economic Society, vol. 117(520), pages 654-685, April.
    5. Crawford, Gregory S. & Crespo, Joseph & Tauchen, Helen, 2007. "Bidding asymmetries in multi-unit auctions: Implications of bid function equilibria in the British spot market for electricity," International Journal of Industrial Organization, Elsevier, vol. 25(6), pages 1233-1268, December.
    6. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    7. Paul Joskow & Jean Tirole, 2005. "Merchant Transmission Investment," Journal of Industrial Economics, Wiley Blackwell, vol. 53(2), pages 233-264, June.
    8. Robert A. Ritz, 2014. "On Welfare Losses Due to Imperfect Competition," Journal of Industrial Economics, Wiley Blackwell, vol. 62(1), pages 167-190, March.
    9. Paul Twomey & Karsten Neuhoff, 2005. "Market Power and Technological Bias: The Case of Electricity Generation," Working Papers EPRG 0501, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Bushnell, James, 2004. "California's electricity crisis: a market apart?," Energy Policy, Elsevier, vol. 32(9), pages 1045-1052, June.
    11. Dressler, Luisa, 2016. "Support schemes for renewable electricity in the European Union: Producer strategies and competition," Energy Economics, Elsevier, vol. 60(C), pages 186-196.
    12. Frank A. Wolak, 2000. "Market Design and Price Behavior in Restructured Electricity Markets: An International Comparison," NBER Chapters, in: Deregulation and Interdependence in the Asia-Pacific Region, pages 79-137, National Bureau of Economic Research, Inc.
    13. Aitor Ciarreta & María Espinosa, 2010. "Market power in the Spanish electricity auction," Journal of Regulatory Economics, Springer, vol. 37(1), pages 42-69, February.
    14. Petrella, Andrea & Sapio, Alessandro, 2012. "Assessing the impact of forward trading, retail liberalization, and white certificates on the Italian wholesale electricity prices," Energy Policy, Elsevier, vol. 40(C), pages 307-317.
    15. Adilov, Nodir, 2012. "Strategic use of forward contracts and capacity constraints," International Journal of Industrial Organization, Elsevier, vol. 30(2), pages 164-173.
    16. Majid Al-Gwaiz & Xiuli Chao & Owen Q. Wu, 2017. "Understanding How Generation Flexibility and Renewable Energy Affect Power Market Competition," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 114-131, February.
    17. Haita, Corina, 2014. "Endogenous market power in an emissions trading scheme with auctioning," Resource and Energy Economics, Elsevier, vol. 37(C), pages 253-278.
    18. Simshauser, Paul & Tian, Yuan & Whish-Wilson, Patrick, 2015. "Vertical integration in energy-only electricity markets," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 35-56.
    19. Hauteclocque, Adrien de & Glachant, Jean-Michel, 2009. "Long-term energy supply contracts in European competition policy: Fuzzy not crazy," Energy Policy, Elsevier, vol. 37(12), pages 5399-5407, December.
    20. Machiel Mulder & Gijsbert Zwart, 2006. "Government involvement in liberalised gas markets; a welfare-economic analysis of Dutch gas-depletion policy," CPB Document 110, CPB Netherlands Bureau for Economic Policy Analysis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:100:y:2017:i:c:p:53-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.