IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v100y2017icp53-64.html
   My bibliography  Save this article

Optimal scheduling of demand responsive industrial production with hybrid renewable energy systems

Author

Listed:
  • Wang, Xiaonan
  • El-Farra, Nael H.
  • Palazoglu, Ahmet

Abstract

This paper presents a methodology for the application of real-time optimization techniques to the problem of optimally scheduling and managing the interaction between electricity providers and users so that the grid and loads can come to an agreement to achieve optimal economic performance. The energy flows in typical industrial processes (e.g., chlor-alkali production) are simulated to illustrate day-ahead scheduling and contract following behaviors, as well as real-time demand response management. A communication and incentive scheme is first proposed for the complete energy scheduling process. Energy management strategies are then developed to realize the objectives of meeting production requirements while minimizing the overall operating and environmental costs through producing, purchasing and selling electricity. The energy contract following and demand response policies are also integrated into the proposed methodology, which appear to reduce uncertainties and help maintain the reliability of the grid.

Suggested Citation

  • Wang, Xiaonan & El-Farra, Nael H. & Palazoglu, Ahmet, 2017. "Optimal scheduling of demand responsive industrial production with hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 100(C), pages 53-64.
  • Handle: RePEc:eee:renene:v:100:y:2017:i:c:p:53-64
    DOI: 10.1016/j.renene.2016.05.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811630461X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Green, 1999. "The Electricity Contract Market in England and Wales," Journal of Industrial Economics, Wiley Blackwell, vol. 47(1), pages 107-124, March.
    2. Su, Wencong & Huang, Alex Q., 2014. "A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers," Applied Energy, Elsevier, vol. 119(C), pages 341-350.
    3. Bae, Mungyu & Kim, Hwantae & Kim, Eugene & Chung, Albert Yongjoon & Kim, Hwangnam & Roh, Jae Hyung, 2014. "Toward electricity retail competition: Survey and case study on technical infrastructure for advanced electricity market system," Applied Energy, Elsevier, vol. 133(C), pages 252-273.
    4. Broeren, M.L.M. & Saygin, D. & Patel, M.K., 2014. "Forecasting global developments in the basic chemical industry for environmental policy analysis," Energy Policy, Elsevier, vol. 64(C), pages 273-287.
    5. Cappers, Peter & Goldman, Charles & Kathan, David, 2010. "Demand response in U.S. electricity markets: Empirical evidence," Energy, Elsevier, vol. 35(4), pages 1526-1535.
    6. repec:bla:jindec:v:47:y:1999:i:1:p:107-24 is not listed on IDEAS
    7. Reddy, K.S. & Kumar, Madhusudan & Mallick, T.K. & Sharon, H. & Lokeswaran, S., 2014. "A review of Integration, Control, Communication and Metering (ICCM) of renewable energy based smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 180-192.
    8. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    9. Wang, Xiaonan & Palazoglu, Ahmet & El-Farra, Nael H., 2015. "Operational optimization and demand response of hybrid renewable energy systems," Applied Energy, Elsevier, vol. 143(C), pages 324-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Xi & Liu, Yanfeng & Feng, Pingan & Gao, Yuan & Guo, Zhenxiang, 2021. "Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side," Applied Energy, Elsevier, vol. 294(C).
    2. Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Li, Yinan & Yang, Wentao & He, Ping & Chen, Chang & Wang, Xiaonan, 2019. "Design and management of a distributed hybrid energy system through smart contract and blockchain," Applied Energy, Elsevier, vol. 248(C), pages 390-405.
    4. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    5. Sgouridis, Sgouris & Ali, Mohamed & Sleptchenko, Andrei & Bouabid, Ali & Ospina, Gustavo, 2021. "Aluminum smelters in the energy transition: Optimal configuration and operation for renewable energy integration in high insolation regions," Renewable Energy, Elsevier, vol. 180(C), pages 937-953.
    6. Noor, Sana & Yang, Wentao & Guo, Miao & van Dam, Koen H. & Wang, Xiaonan, 2018. "Energy Demand Side Management within micro-grid networks enhanced by blockchain," Applied Energy, Elsevier, vol. 228(C), pages 1385-1398.
    7. Caro-Ruiz, C. & Lombardi, P. & Richter, M. & Pelzer, A. & Komarnicki, P. & Pavas, A. & Mojica-Nava, E., 2019. "Coordination of optimal sizing of energy storage systems and production buffer stocks in a net zero energy factory," Applied Energy, Elsevier, vol. 238(C), pages 851-862.
    8. Purkayastha, Sagar N. & Chen, Yujun & Gates, Ian D. & Trifkovic, Milana, 2020. "A kelly criterion based optimal scheduling of a microgrid on a steam-assisted gravity drainage (SAGD) facility," Energy, Elsevier, vol. 204(C).
    9. Rigby, Aidan & Baker, Una & Lindley, Benjamin & Wagner, Michael, 2024. "Generation and validation of comprehensive synthetic weather histories using auto-regressive moving-average models," Renewable Energy, Elsevier, vol. 224(C).
    10. Otashu, Joannah I. & Baldea, Michael, 2020. "Scheduling chemical processes for frequency regulation," Applied Energy, Elsevier, vol. 260(C).
    11. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    12. Roksana Yasmin & B. M. Ruhul Amin & Rakibuzzaman Shah & Andrew Barton, 2024. "A Survey of Commercial and Industrial Demand Response Flexibility with Energy Storage Systems and Renewable Energy," Sustainability, MDPI, vol. 16(2), pages 1-41, January.
    13. Gulnar Shaimardanovna Kaliakparova & Y?lena Evgenevna Gridneva & Sara Sarsebekovna Assanova & Sandugash Babagalikyzy Sauranbay & Abdizhapar Djumanovich Saparbayev, 2020. "International Economic Cooperation of Central Asian Countries on Energy Efficiency and Use of Renewable Energy Sources," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 539-545.
    14. Kotur, Dimitrije & Đurišić, Željko, 2017. "Optimal spatial and temporal demand side management in a power system comprising renewable energy sources," Renewable Energy, Elsevier, vol. 108(C), pages 533-547.
    15. Wang, Huilong & Wang, Shengwei, 2021. "A disturbance compensation enhanced control strategy of HVAC systems for improved building indoor environment control when providing power grid frequency regulation," Renewable Energy, Elsevier, vol. 169(C), pages 1330-1342.
    16. Lim, Kai Zhuo & Lim, Kang Hui & Wee, Xian Bin & Li, Yinan & Wang, Xiaonan, 2020. "Optimal allocation of energy storage and solar photovoltaic systems with residential demand scheduling," Applied Energy, Elsevier, vol. 269(C).
    17. Desta, Alemayehu Addisu & Badis, Hakim & George, Laurent, 2018. "Demand response scheduling in industrial asynchronous production lines constrained by available power and production rate," Applied Energy, Elsevier, vol. 230(C), pages 1414-1424.
    18. Nirbheram, Joshi Sukhdev & Mahesh, Aeidapu & Bhimaraju, Ambati, 2023. "Techno-economic analysis of grid-connected hybrid renewable energy system adapting hybrid demand response program and novel energy management strategy," Renewable Energy, Elsevier, vol. 212(C), pages 1-16.
    19. Chen, Y. & Trifkovic, M., 2018. "Optimal scheduling of a microgrid in a volatile electricity market environment: Portfolio optimization approach," Applied Energy, Elsevier, vol. 226(C), pages 703-712.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yiqun, 2016. "Demand Response Potential of Electricity End-users Facing Real Time Pricing," Research Report 16019-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    2. Jelena Lukić & Miloš Radenković & Marijana Despotović-Zrakić & Aleksandra Labus & Zorica Bogdanović, 2017. "Supply chain intelligence for electricity markets: A smart grid perspective," Information Systems Frontiers, Springer, vol. 19(1), pages 91-107, February.
    3. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    4. Thomasi, Virginia & Siluk, Julio Cezar M. & Rigo, Paula D. & Pappis, Cesar Augusto de O., 2024. "Challenges, improvements, and opportunities market with the liberalization of the residential electricity market," Energy Policy, Elsevier, vol. 192(C).
    5. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 836-844.
    6. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    7. Zhou, Kaile & Yang, Shanlin, 2015. "Demand side management in China: The context of China’s power industry reform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 954-965.
    8. Michael N. Vrahatis & Panagiotis Kontogiorgos & George P. Papavassilopoulos, 2020. "Particle Swarm Optimization for Computing Nash and Stackelberg Equilibria in Energy Markets," SN Operations Research Forum, Springer, vol. 1(3), pages 1-23, September.
    9. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    10. Siano, Pierluigi & Sarno, Debora, 2016. "Assessing the benefits of residential demand response in a real time distribution energy market," Applied Energy, Elsevier, vol. 161(C), pages 533-551.
    11. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    12. Benjamin F. Hobbs & Fieke A.M. Rijkers & Maroeska G. Boots, 2005. "The More Cooperation, The More Competition? A Cournot Analysis of the Benefits of Electric Market Coupling," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 69-98.
    13. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    14. Dong, Jun & Xue, Guiyuan & Li, Rong, 2016. "Demand response in China: Regulations, pilot projects and recommendations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 13-27.
    15. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    16. de Bragança, Gabriel Godofredo Fiuza & Daglish, Toby, 2017. "Investing in vertical integration: electricity retail market participation," Energy Economics, Elsevier, vol. 67(C), pages 355-365.
    17. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    18. Romero-Quete, David & Garcia, Javier Rosero, 2019. "An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids," Applied Energy, Elsevier, vol. 242(C), pages 1436-1447.
    19. Liski, Matti & Montero, Juan-Pablo, 2014. "Forward trading in exhaustible-resource oligopoly," Resource and Energy Economics, Elsevier, vol. 37(C), pages 122-146.
    20. Bunn, Derek W. & Chen, Dipeng, 2013. "The forward premium in electricity futures," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 173-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:100:y:2017:i:c:p:53-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.