IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p11216-d1549016.html
   My bibliography  Save this article

A Reputation-Based Pricing Strategy for Distributed Diverse Entity Systems: Enhancing Market Efficiency Through Real-Time Reputation Updates

Author

Listed:
  • Tong Li

    (School of Computer And Engineering, Northeastern University, Shenyang 110004, China
    State Grid Liaoning Electric Power Research Institute, Shenyang 110142, China)

  • Yuheng Li

    (School of Information Science and Engineering, Northeastern University, Shenyang 110004, China)

  • Junpeng Gao

    (School of Information Science and Engineering, Northeastern University, Shenyang 110004, China)

  • Benhua Qian

    (School of Information Science and Engineering, Northeastern University, Shenyang 110004, China)

  • Hai Zhao

    (School of Computer And Engineering, Northeastern University, Shenyang 110004, China)

Abstract

Although existing studies address the reduction of default rates by adjusting electricity trading rankings based on reputation values, the mechanisms for penalizing electricity trading defaults remain incomplete. Therefore, this paper proposes a real-time reputation-based pricing method for distributed diverse entity systems to mitigate electricity trading defaults. First, a reputation reward and penalty mechanism evaluates the trading behavior of diverse entities. Next, a ‘price-dominant, reputation-auxiliary’ pricing concept guides the process. Following this, a reputation-driven pricing strategy model for distributed adjustable resources allows for bid adjustments based on real-time market dynamics. Upon electricity trading completion, the reputation values of all entities are recalculated and disclosed, enabling entities to adjust future pricing and electricity trading quantities to optimize their profits. This method effectively reduces default rates while alleviating the impact of market electricity tradings on peak-to-valley fluctuations. Finally, simulations conducted on the MATLAB 2018b platform confirm the rationality and feasibility of the proposed real-time reputation-based pricing strategy within distributed diverse entity systems.

Suggested Citation

  • Tong Li & Yuheng Li & Junpeng Gao & Benhua Qian & Hai Zhao, 2024. "A Reputation-Based Pricing Strategy for Distributed Diverse Entity Systems: Enhancing Market Efficiency Through Real-Time Reputation Updates," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11216-:d:1549016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/11216/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/11216/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xiaoyan & Zhu, Shanying & He, Jianping & Yang, Bo & Guan, Xinping, 2019. "Credit rating based real-time energy trading in microgrids," Applied Energy, Elsevier, vol. 236(C), pages 985-996.
    2. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Hannes Agabus, 2023. "Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review," Energies, MDPI, vol. 16(5), pages 1-52, February.
    3. Peña, Juan Ignacio & Rodriguez, Rosa, 2018. "Default supply auctions in electricity markets: Challenges and proposals," Energy Policy, Elsevier, vol. 122(C), pages 142-151.
    4. Waseem, Muhammad & Lin, Zhenzhi & Liu, Shengyuan & Zhang, Zhi & Aziz, Tarique & Khan, Danish, 2021. "Fuzzy compromised solution-based novel home appliances scheduling and demand response with optimal dispatch of distributed energy resources," Applied Energy, Elsevier, vol. 290(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    2. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    3. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    4. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    5. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    6. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & David Celeita & George J. Anders, 2024. "A Stochastic Decision-Making Tool Suite for Distributed Energy Resources Integration in Energy Markets," Energies, MDPI, vol. 17(10), pages 1-28, May.
    7. Wang, Juan & Zheng, Junjun & Yu, Liukai & Goh, Mark & Tang, Yunying & Huang, Yongchao, 2023. "Distributed Reputation-Distance iterative auction system for Peer-To-Peer power trading," Applied Energy, Elsevier, vol. 345(C).
    8. Zhu, Dafeng & Yang, Bo & Ma, Chengbin & Wang, Zhaojian & Zhu, Shanying & Ma, Kai & Guan, Xinping, 2022. "Stochastic gradient-based fast distributed multi-energy management for an industrial park with temporally-coupled constraints," Applied Energy, Elsevier, vol. 317(C).
    9. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    10. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.
    11. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Azim, M. Imran & Morstyn, Thomas & Poor, H. Vincent & Niyato, Dustin & Bean, Richard, 2020. "A coalition formation game framework for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 261(C).
    12. Jinhua Zhang & Liding Zhu & Shengchao Zhao & Jie Yan & Lingling Lv, 2023. "Optimal Configuration of Energy Storage Systems in High PV Penetrating Distribution Network," Energies, MDPI, vol. 16(5), pages 1-21, February.
    13. Tianlei Zang & Shijun Wang & Zian Wang & Chuangzhi Li & Yunfei Liu & Yujian Xiao & Buxiang Zhou, 2024. "Integrated Planning and Operation Dispatching of Source–Grid–Load–Storage in a New Power System: A Coupled Socio–Cyber–Physical Perspective," Energies, MDPI, vol. 17(12), pages 1-43, June.
    14. Li, Zhe & Liang, Shuguang & Pan, Xianyou & Pang, Meng, 2024. "Credit risk prediction based on loan profit: Evidence from Chinese SMEs," Research in International Business and Finance, Elsevier, vol. 67(PA).
    15. Binghui Han & Younes Zahraoui & Marizan Mubin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski, 2023. "Optimal Strategy for Comfort-Based Home Energy Management System Considering Impact of Battery Degradation Cost Model," Mathematics, MDPI, vol. 11(6), pages 1-26, March.
    16. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2024. "Smart home energy management using demand response with uncertainty analysis of electric vehicle in the presence of renewable energy sources," Applied Energy, Elsevier, vol. 364(C).
    17. Zhou, Dezhi & Wu, Chuantao & Sui, Quan & Lin, Xiangning & Li, Zhengtian, 2022. "A novel all-electric-ship-integrated energy cooperation coalition for multi-island microgrids," Applied Energy, Elsevier, vol. 320(C).
    18. Nicolai Lystbæk & Mikkel Gregersen & Hamid Reza Shaker, 2023. "Review of Energy Portfolio Optimization in Energy Markets Considering Flexibility of Power-to-X," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    19. Zhao, Bingxu & Cao, Xiaodong & Duan, Pengfei, 2024. "Cooperative operation of multiple low-carbon microgrids: An optimization study addressing gaming fraud and multiple uncertainties," Energy, Elsevier, vol. 297(C).
    20. Ahmed, Ijaz & Rehan, Muhammad & Basit, Abdul & Malik, Saddam Hussain & Alvi, Um-E-Habiba & Hong, Keum-Shik, 2022. "Multi-area economic emission dispatch for large-scale multi-fueled power plants contemplating inter-connected grid tie-lines power flow limitations," Energy, Elsevier, vol. 261(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11216-:d:1549016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.