IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p11200-d1548629.html
   My bibliography  Save this article

A Hybrid Method of Cooling and Heating Consumption Prediction for Six Types of Buildings Based on Machine Learning

Author

Listed:
  • Baibing Chi

    (School of Economics & Management, Beihang University, Beijing 100191, China)

  • Yashuai Li

    (School of Economics & Management, Beihang University, Beijing 100191, China)

  • Dawei Zhou

    (Installation Engineering Co., Ltd. of First Bureau Group of CSCEC, Beijing 102600, China)

Abstract

Sustainable development is a vital strategy that is being implemented in China. To achieve sustainable development in terms of building energy efficiency, accurately estimating the amount of energy that buildings will consume is crucial. A theoretical framework for machine learning-based building energy consumption prediction is presented in this study; six different types of building information models in five major thermal design zones of China were used for gathering information and forming a database. The suggested prediction model’s distinctive feature is that nine factors affecting building energy consumption in three aspects, including macro-view, middle-view, and micro-view aspects, are proposed, eight machine learning techniques are employed to predict building energy consumption, and the factors influencing energy consumption are identified. Two standard measures were employed to evaluate the framework’s performance: the coefficient of determination (R 2 ) and the root mean square error (RMSE). It was found that the accuracies of all eight models were above 90%. Among them, the kNN model and GBRT have the best prediction results. Using the optimal GBRT model, the feature importance ranking was obtained. The proposed machine learning prediction model informs similar studies and can be applied to predict different buildings’ cooling and heating loads accurately.

Suggested Citation

  • Baibing Chi & Yashuai Li & Dawei Zhou, 2024. "A Hybrid Method of Cooling and Heating Consumption Prediction for Six Types of Buildings Based on Machine Learning," Sustainability, MDPI, vol. 16(24), pages 1-27, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11200-:d:1548629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/11200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/11200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    2. Gao, Zhikun & Yu, Junqi & Zhao, Anjun & Hu, Qun & Yang, Siyuan, 2022. "A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine," Energy, Elsevier, vol. 238(PC).
    3. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    4. Lu, Chujie & Li, Sihui & Reddy Penaka, Santhan & Olofsson, Thomas, 2023. "Automated machine learning-based framework of heating and cooling load prediction for quick residential building design," Energy, Elsevier, vol. 274(C).
    5. Jaume Manero & Javier Béjar & Ulises Cortés, 2019. "“Dust in the Wind...”, Deep Learning Application to Wind Energy Time Series Forecasting," Energies, MDPI, vol. 12(12), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noman Khan & Fath U Min Ullah & Ijaz Ul Haq & Samee Ullah Khan & Mi Young Lee & Sung Wook Baik, 2021. "AB-Net: A Novel Deep Learning Assisted Framework for Renewable Energy Generation Forecasting," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
    2. Yan, Xiuying & Ji, Xingxing & Meng, Qinglong & Sun, Hang & Lei, Yu, 2024. "A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism," Energy, Elsevier, vol. 292(C).
    3. Kang, Yiting & Zhang, Dongjie & Cui, Yu & Xu, Wei & Lu, Shilei & Wu, Jianlin & Hu, Yiqun, 2024. "Integrated passive design method optimized for carbon emissions, economics, and thermal comfort of zero-carbon buildings," Energy, Elsevier, vol. 295(C).
    4. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
    5. Jinyi Li & Zhen Liu & Guizhong Han & Peter Demian & Mohamed Osmani, 2024. "The Relationship Between Artificial Intelligence (AI) and Building Information Modeling (BIM) Technologies for Sustainable Building in the Context of Smart Cities," Sustainability, MDPI, vol. 16(24), pages 1-38, December.
    6. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    7. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    8. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. He, Yan & Zhang, Hongli & Dong, Yingchao & Wang, Cong & Ma, Ping, 2024. "Residential net load interval prediction based on stacking ensemble learning," Energy, Elsevier, vol. 296(C).
    10. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    11. Meiyan Wang & Chen Chen & Bingxin Fan & Zilu Yin & Wenxuan Li & Huifang Wang & Fang’ai Chi, 2023. "Multi-Objective Optimization of Envelope Design of Rural Tourism Buildings in Southeastern Coastal Areas of China Based on NSGA-II Algorithm and Entropy-Based TOPSIS Method," Sustainability, MDPI, vol. 15(9), pages 1-27, April.
    12. Mrówczyńska, Maria & Skiba, Marta & Bazan-Krzywoszańska, Anna & Sztubecka, Małgorzata, 2020. "Household standards and socio-economic aspects as a factor determining energy consumption in the city," Applied Energy, Elsevier, vol. 264(C).
    13. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    14. Sameer Al-Dahidi & Piero Baraldi & Enrico Zio & Lorenzo Montelatici, 2021. "Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    15. Adam Slowik & Dorin Moldovan, 2024. "Multi-Objective Plum Tree Algorithm and Machine Learning for Heating and Cooling Load Prediction," Energies, MDPI, vol. 17(12), pages 1-23, June.
    16. Simian Pang & Zixuan Zheng & Fan Luo & Xianyong Xiao & Lanlan Xu, 2021. "Hybrid Forecasting Methodology for Wind Power-Photovoltaic-Concentrating Solar Power Generation Clustered Renewable Energy Systems," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    17. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    18. Ifedayo Oladeji & Ramon Zamora & Tek Tjing Lie, 2021. "An Online Security Prediction and Control Framework for Modern Power Grids," Energies, MDPI, vol. 14(20), pages 1-27, October.
    19. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11200-:d:1548629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.