IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6639-d655924.html
   My bibliography  Save this article

An Online Security Prediction and Control Framework for Modern Power Grids

Author

Listed:
  • Ifedayo Oladeji

    (Electrical and Electronic Engineering Department, Auckland University of Technology (AUT), Auckland 1010, New Zealand)

  • Ramon Zamora

    (Electrical and Electronic Engineering Department, Auckland University of Technology (AUT), Auckland 1010, New Zealand)

  • Tek Tjing Lie

    (Electrical and Electronic Engineering Department, Auckland University of Technology (AUT), Auckland 1010, New Zealand)

Abstract

The proliferation of renewable energy sources distributed generation (RES-DG) into the grid results in time-varying inertia constant. To ensure the security of the grid under varying inertia, techniques for fast security assessment are required. In addition, considering the high penetration of RES-DG units into the modern grids, security prediction using varying grid features is crucial. The computation burden concerns of conventional time-domain security assessment techniques make it unsuitable for real-time security prediction. This paper, therefore, proposes a fast security monitoring model that includes security prediction and load shedding for security control. The attributes considered in this paper include the load level, inertia constant, fault location, and power dispatched from the renewable energy sources generator. An incremental Naïve Bayes algorithm is applied on the training dataset developed from the responses of the grid to transient stability simulations. An additive Gaussian process regression (GPR) model is proposed to estimate the load shedding required for the predicted insecure states. Finally, an algorithm based on the nodes’ security margin is proposed to determine the optimal node (s) for the load shedding. The average security prediction and load shedding estimation model training times are 1.2 s and 3 s, respectively. The result shows that the proposed model can predict the security of the grid, estimate the amount of load shed required, and determine the specific node for load shedding operation.

Suggested Citation

  • Ifedayo Oladeji & Ramon Zamora & Tek Tjing Lie, 2021. "An Online Security Prediction and Control Framework for Modern Power Grids," Energies, MDPI, vol. 14(20), pages 1-27, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6639-:d:655924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    2. Jafar Jallad & Saad Mekhilef & Hazlie Mokhlis & Javed Laghari & Ola Badran, 2018. "Application of Hybrid Meta-Heuristic Techniques for Optimal Load Shedding Planning and Operation in an Islanded Distribution Network Integrated with Distributed Generation," Energies, MDPI, vol. 11(5), pages 1-25, May.
    3. Walter M. Villa-Acevedo & Jesús M. López-Lezama & Delia G. Colomé, 2020. "Voltage Stability Margin Index Estimation Using a Hybrid Kernel Extreme Learning Machine Approach," Energies, MDPI, vol. 13(4), pages 1-19, February.
    4. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    5. Jürgen Marchgraber & Christian Alács & Yi Guo & Wolfgang Gawlik & Adolfo Anta & Alexander Stimmer & Martin Lenz & Manuel Froschauer & Michaela Leonhardt, 2020. "Comparison of Control Strategies to Realize Synthetic Inertia in Converters," Energies, MDPI, vol. 13(13), pages 1-21, July.
    6. Arcia-Garibaldi, Guadalupe & Cruz-Romero, Pedro & Gómez-Expósito, Antonio, 2018. "Future power transmission: Visions, technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 285-301.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunus Yalman & Tayfun Uyanık & İbrahim Atlı & Adnan Tan & Kamil Çağatay Bayındır & Ömer Karal & Saeed Golestan & Josep M. Guerrero, 2022. "Prediction of Voltage Sag Relative Location with Data-Driven Algorithms in Distribution Grid," Energies, MDPI, vol. 15(18), pages 1-16, September.
    2. Petar Sarajcev & Antonijo Kunac & Goran Petrovic & Marin Despalatovic, 2022. "Artificial Intelligence Techniques for Power System Transient Stability Assessment," Energies, MDPI, vol. 15(2), pages 1-21, January.
    3. Dahu Li & Xiaoda Cheng & Leijiao Ge & Wentao Huang & Jun He & Zhongwei He, 2022. "Multiple Power Supply Capacity Planning Research for New Power System Based on Situation Awareness," Energies, MDPI, vol. 15(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    2. Antans Sauhats & Andrejs Utans & Jurijs Silinevics & Gatis Junghans & Dmitrijs Guzs, 2021. "Enhancing Power System Frequency with a Novel Load Shedding Method Including Monitoring of Synchronous Condensers’ Power Injections," Energies, MDPI, vol. 14(5), pages 1-21, March.
    3. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Chua, Hui, 2021. "Methane production test of the anaerobic sludge from rice parboiling industries with the addition of biodiesel glycerol from rice bran oil in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    5. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    6. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    7. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    8. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    9. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    12. Ki Ryong Kim & Sangjung Lee & Jong-Pil Lee & Jaesik Kang, 2021. "An Enhanced Control Strategy for Mitigation of State-Transition Oscillation Phenomena in Grid-Forming Self-Synchronized Converter System with Islanded Power System," Energies, MDPI, vol. 14(24), pages 1-20, December.
    13. Kanwal, S. & Khan, B. & Ali, S.M. & Mehmood, C.A., 2018. "Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system," Renewable Energy, Elsevier, vol. 126(C), pages 865-875.
    14. Dario Garozzo & Giuseppe Marco Tina, 2020. "Evaluation of the Effective Active Power Reserve for Fast Frequency Response of PV with BESS Inverters Considering Reactive Power Control," Energies, MDPI, vol. 13(13), pages 1-16, July.
    15. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    17. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    18. Jürgen Marchgraber & Wolfgang Gawlik, 2020. "Investigation of Black-Starting and Islanding Capabilities of a Battery Energy Storage System Supplying a Microgrid Consisting of Wind Turbines, Impedance- and Motor-Loads," Energies, MDPI, vol. 13(19), pages 1-24, October.
    19. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    20. Ratnam Kamala Sarojini & Kaliannan Palanisamy & Enrico De Tuglie, 2022. "A Fuzzy Logic-Based Emulated Inertia Control to a Supercapacitor System to Improve Inertia in a Low Inertia Grid with Renewables," Energies, MDPI, vol. 15(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6639-:d:655924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.