IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p11081-d1546112.html
   My bibliography  Save this article

Date Palm Waste-Derived Biochar for Improving Hydrological Properties of Sandy Soil Under Saturated and Unsaturated Conditions

Author

Listed:
  • Abdulaziz G. Alghamdi

    (Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Abdulrasoul Alomran

    (Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Hesham M. Ibrahim

    (Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Arafat Alkhasha

    (Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Zafer Alasmary

    (Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

Abstract

Water conservation and effective irrigation management are vital for sustainable agriculture in arid regions. While organic soil amendments have been widely used to enhance water retention in sandy soils, research on the use of date palm waste-derived biochar remains limited. Thus, this study aimed to explore the innovative application of biochar produced from date palm waste, focusing on its effects on the hydrological properties of sandy soil. Biochars of varying particle sizes (0.5, 1, and 2 mm) and pyrolysis temperatures (300 °C, 450 °C, and 600 °C) were produced and their impacts were assessed under both saturated and unsaturated conditions on soil hydrological properties. The biochar was incorporated into soil columns at application rates of 0%, 1%, 3%, and 5% ( w / w ) within a 10 cm layer on top of 35 cm deep soil columns. The soil columns were placed vertically into water basins for saturation. Evaporation, infiltration, and saturated hydraulic conductivity were measured. The findings revealed that the application of 1%, 3%, and 5% biochar significantly increased soil water retention by 36.80%, 34.18%, and 29.66%, while cumulative evaporation decreased by 7.30%, 2.00%, and 1.35%, respectively, as compared to the control. Water retained at the end of the experiment was increased by 100.63%, 112.29%, and 101.68%, while unsaturated hydraulic conductivity decreased by 21.27%, 26.15%, and 26.17% after amending the soil with 1%, 3%, and 5% biochar, respectively, as compared to the control. The water retention ranged between 30.34 and 42.51%, 22.59 and 43.20%, and 22.48 and 38.81% for biochar produced at 300 °C, 450 °C, and 600 °C, respectively. Water infiltration rate and pore size was decreased with the increased pyrolysis temperature. Overall, the application rates of 3% and 5% with particle sizes of 1 and 0.5 mm and low pyrolysis temperature were most efficient for improving soil properties such as water retention, reducing unsaturated hydraulic conductivity, reducing the rate and volume of infiltration, and enhancing the micro-porosity reduction of sandy soils. In a nutshell, this study highlights the potential of date palm waste-derived biochar as an effective soil amendment, significantly enhancing water retention by up to 112.29% and reducing evaporation. By optimizing irrigation management in sandy soils, these findings contribute to more sustainable agricultural practices.

Suggested Citation

  • Abdulaziz G. Alghamdi & Abdulrasoul Alomran & Hesham M. Ibrahim & Arafat Alkhasha & Zafer Alasmary, 2024. "Date Palm Waste-Derived Biochar for Improving Hydrological Properties of Sandy Soil Under Saturated and Unsaturated Conditions," Sustainability, MDPI, vol. 16(24), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11081-:d:1546112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/11081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/11081/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Günal, Elif & Erdem, Halil & Çelik, İsmail, 2018. "Effects of three different biochars amendment on water retention of silty loam and loamy soils," Agricultural Water Management, Elsevier, vol. 208(C), pages 232-244.
    2. Shakeel Ahmad Bhat & Alban Kuriqi & Mehraj U. Din Dar & Owais Bhat & Saad Sh. Sammen & Abu Reza Md. Towfiqul Islam & Ahmed Elbeltagi & Owais Shah & Nadhir AI-Ansari & Rawshan Ali & Salim Heddam, 2022. "Application of Biochar for Improving Physical, Chemical, and Hydrological Soil Properties: A Systematic Review," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
    3. Tsai Garcia-Perez & Manuel Raul Pelaez-Samaniego & Jorge Delgado-Noboa & Eduardo J. Chica, 2022. "Combined Effect of Biochar and Fertilizers on Andean Highland Soils before and after Cropping," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Ghorbani & Elnaz Amirahmadi & Reinhard W. Neugschwandtner & Petr Konvalina & Marek Kopecký & Jan Moudrý & Kristýna Perná & Yves Theoneste Murindangabo, 2022. "The Impact of Pyrolysis Temperature on Biochar Properties and Its Effects on Soil Hydrological Properties," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    2. Eric Britt Moore, 2023. "Challenges and Opportunities for Cover Crop Mediated Soil Water Use Efficiency Enhancements in Temperate Rain-Fed Cropping Systems: A Review," Land, MDPI, vol. 12(5), pages 1-14, April.
    3. Tomasz Głąb & Krzysztof Gondek & Monika Mierzwa-Hersztek, 2024. "Impact of Soil Organic Bioregeneration Amendments on Maize Biomass and Soil Physical Quality," Agriculture, MDPI, vol. 14(7), pages 1-21, June.
    4. Agnieszka Kozioł & Dominika Paliwoda & Grzegorz Mikiciuk & Nadhira Benhadji, 2024. "Biochar as a Multi-Action Substance Used to Improve Soil Properties in Horticultural and Agricultural Crops—A Review," Agriculture, MDPI, vol. 14(12), pages 1-40, November.
    5. Yeganeh Arablousabet & Arvydas Povilaitis, 2024. "Assessing the Role of Air Nanobubble-Saturated Water in Enhancing Soil Moisture, Nutrient Retention, and Plant Growth," Sustainability, MDPI, vol. 16(13), pages 1-21, July.
    6. Valeria Lavagi & Jonathan Kaplan & Georgios Vidalakis & Michelle Ortiz & Michael V. Rodriguez & Madison Amador & Francesca Hopkins & Samantha Ying & Deborah Pagliaccia, 2024. "Recycling Agricultural Waste to Enhance Sustainable Greenhouse Agriculture: Analyzing the Cost-Effectiveness and Agronomic Benefits of Bokashi and Biochar Byproducts as Soil Amendments in Citrus Nurse," Sustainability, MDPI, vol. 16(14), pages 1-16, July.
    7. Jonathan O. Hernandez & Damcelle T. Cortes & Byung Bae Park, 2024. "Research Geographical Distribution, Strategies, and Environmental and Socioeconomic Factors Influencing the Success of Land-Based Restoration: A Systematic Review," Sustainability, MDPI, vol. 16(15), pages 1-25, July.
    8. Mahmoud El-Sharkawy & Ahmed H. El-Naggar & Arwa Abdulkreem AL-Huqail & Adel M. Ghoneim, 2022. "Acid-Modified Biochar Impacts on Soil Properties and Biochemical Characteristics of Crops Grown in Saline-Sodic Soils," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    9. Magdalena Bednik & Agnieszka Medyńska-Juraszek & Irmina Ćwieląg-Piasecka & Michał Dudek, 2023. "Enzyme Activity and Dissolved Organic Carbon Content in Soils Amended with Different Types of Biochar and Exogenous Organic Matter," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    10. Muniba Farhad & Maryam Noor & Muhammad Zubair Yasin & Mohsin Hussain Nizamani & Veysel Turan & Muhammad Iqbal, 2024. "Interactive Suitability of Rice Stubble Biochar and Arbuscular Mycorrhizal Fungi for Improving Wastewater-Polluted Soil Health and Reducing Heavy Metals in Peas," Sustainability, MDPI, vol. 16(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11081-:d:1546112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.