IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10710-d1538153.html
   My bibliography  Save this article

Optimizing Bus Bridging Service Considering Passenger Transfer and Reneging Behavior

Author

Listed:
  • Ziqi Zhang

    (School of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

  • Xuan Li

    (School of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

  • Jikang Zhang

    (School of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

  • Yang Shi

    (Municipal Department, Ningbo Urban Planning & Design Institute, Ningbo 315042, China)

Abstract

This paper addresses the design of bus bridging services in response to urban rail disruption, which plays a critical role in enhancing the resilience and sustainability of urban transportation systems. Specifically, it focuses on unplanned urban rail disruptions that result in temporary closure of line sections, including transfer stations. Under this “transfer scenario”, a heuristic-rule based method is firstly presented to generate candidate bus bridging routes. Non-parallel bridging routes are introduced to facilitate transfer passengers affected by the disruption. Meanwhile, the bridging stops visited by parallel routes are extended beyond the disrupted section, mitigating passenger congestion and bus bunching at turnover stations. Then, we propose an integrated optimization model that collaboratively addresses bus route selection and vehicle deployment issues. Capturing passenger reneging behavior, the model aims to maximize the number of served passengers with tolerable waiting times and minimize total passenger waiting times. A two-stage genetic algorithm is developed to solve the model, which incorporates a multi-agent simulation method to demonstrate dynamic passenger and bus flow within a time–space network. Finally, a case study is conducted to validate the effectiveness of the proposed methods. Sensitivity analyses are performed to explore the impacts of fleet size and route diversity on the overall bridging performance. The results offer valuable insights for transit agencies in designing bus bridging services under transfer scenarios, supporting sustainable urban mobility by promoting efficient public transit solutions that mitigate the social impacts of sudden service disruptions.

Suggested Citation

  • Ziqi Zhang & Xuan Li & Jikang Zhang & Yang Shi, 2024. "Optimizing Bus Bridging Service Considering Passenger Transfer and Reneging Behavior," Sustainability, MDPI, vol. 16(23), pages 1-24, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10710-:d:1538153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10710/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10710/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Evelien van der Hurk & Haris N. Koutsopoulos & Nigel Wilson & Leo G. Kroon & Gábor Maróti, 2016. "Shuttle Planning for Link Closures in Urban Public Transport Networks," Transportation Science, INFORMS, vol. 50(3), pages 947-965, August.
    2. Jian Gang Jin & Kwong Meng Teo & Amedeo R. Odoni, 2016. "Optimizing Bus Bridging Services in Response to Disruptions of Urban Transit Rail Networks," Transportation Science, INFORMS, vol. 50(3), pages 790-804, August.
    3. Cadarso, Luis & Marín, Ángel & Maróti, Gábor, 2013. "Recovery of disruptions in rapid transit networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 15-33.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yao & An, Kun, 2021. "Integrated optimization of bus bridging routes and timetables for rail disruptions," European Journal of Operational Research, Elsevier, vol. 295(2), pages 484-498.
    2. Tang, Junqing & Xu, Lei & Luo, Chunling & Ng, Tsan Sheng Adam, 2021. "Multi-disruption resilience assessment of rail transit systems with optimized commuter flows," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    3. Zhu, Yiyang & Jin, Jian Gang & Wang, Hai, 2024. "Path-choice-constrained bus bridging design under urban rail transit disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    4. Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    5. Zheng, Shuai & Liu, Yugang & Lin, Yexin & Wang, Qiang & Yang, Hongtai & Chen, Bin, 2022. "Bridging strategy for the disruption of metro considering the reliability of transportation system: Metro and conventional bus network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Wang, Hui & Li, Feng & Jia, Bin & Gao, Ziyou & Liu, Jialin & Zhang, Hongliang & Song, Dongdong, 2024. "Enhancing the evacuation efficiency through the two-step optimization of train timetable and response vehicles during metro disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    7. Liang, Jinpeng & Wu, Jianjun & Qu, Yunchao & Yin, Haodong & Qu, Xiaobo & Gao, Ziyou, 2019. "Robust bus bridging service design under rail transit system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 97-116.
    8. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    9. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    10. Mo, Baichuan & Koutsopoulos, Haris N. & Zhao, Jinhua, 2022. "Inferring passenger responses to urban rail disruptions using smart card data: A probabilistic framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    11. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    12. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    13. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
    14. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    15. Daniel (Jian) Sun & Yuhan Zhao & Qing-Chang Lu, 2015. "Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    16. Gkiotsalitis, K. & Cats, O. & Liu, T. & Bult, J.M., 2023. "An exact optimization method for coordinating the arrival times of urban rail lines at a common corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    17. Yajuan Deng & Xiaolei Ru & Ziqi Dou & Guohua Liang, 2018. "Design of Bus Bridging Routes in Response to Disruption of Urban Rail Transit," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    18. Chang Han & Leishan Zhou & Bin Guo & Yixiang Yue & Wenqiang Zhao & Zeyu Wang & Hanxiao Zhou, 2023. "An Integrated Strategy for Rescheduling High-Speed Train Operation under Single-Direction Disruption," Sustainability, MDPI, vol. 15(17), pages 1-31, August.
    19. Xu, Xin-yue & Liu, Jun & Li, Hai-ying & Jiang, Man, 2016. "Capacity-oriented passenger flow control under uncertain demand: Algorithm development and real-world case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 130-148.
    20. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10710-:d:1538153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.