IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p9884-d1519794.html
   My bibliography  Save this article

Comparative Analysis of Transit-Oriented Development (TOD) Types in the Metropolitan Region Along the Middle Reaches of the Yangtze River

Author

Listed:
  • Zijing Chen

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China)

  • Tao Wu

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China)

  • Linna Gao

    (Central & Southern China Municipal Engineering Design and Research Institute, Co., Ltd., Wuhan 430014, China)

  • Ye Zhou

    (Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China)

Abstract

Currently, with the acceleration of urbanization, traditional transportation modes are increasingly causing congestion, pollution, and resource waste, drawing widespread attention to Transit-Oriented Development (TOD). TOD is an urban development concept that advocates the implementation of high-density, mixed-use land utilization around transit stations to encourage the use of public transportation, reduce reliance on private vehicles, and achieve more sustainable urban growth. The ‘node–place’ model is a classic analytical framework in TOD typology, forming the foundation for assessing TOD effectiveness. However, this model requires expansion due to its limited adaptability. This study aims to bridge this gap by proposing an innovative, network-based ‘node–place–convenience (NPC)’ model to enhance insights on the overall assessment of metro networks. Using a combination of CRITIC weighting and K-means++ clustering, this study evaluates TOD in cities with metros in the middle reaches of the Yangtze River. By assessing node, place, and convenience values of metro stations, this study compares how different urban structures, population distributions, and metro network configurations impact travel behavior, economic vitality, and regional sustainability. The results show that TOD degree in Wuhan decreases from urban to suburban areas, presenting ‘center to sub-center’ pattern in Changsha, and presenting ‘ring-radial’ distribution across the city center in Nanchang. The clustering results divide TOD benefits into six groups, with Changsha performing the best, followed by Wuhan, while Nanchang still has room for improvement. The average TOD benefits for Wuhan, Changsha, and Nanchang are 0.28, 0.35, and 0.28.

Suggested Citation

  • Zijing Chen & Tao Wu & Linna Gao & Ye Zhou, 2024. "Comparative Analysis of Transit-Oriented Development (TOD) Types in the Metropolitan Region Along the Middle Reaches of the Yangtze River," Sustainability, MDPI, vol. 16(22), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9884-:d:1519794
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/9884/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/9884/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reusser, Dominik E. & Loukopoulos, Peter & Stauffacher, Michael & Scholz, Roland W., 2008. "Classifying railway stations for sustainable transitions – balancing node and place functions," Journal of Transport Geography, Elsevier, vol. 16(3), pages 191-202.
    2. Chorus, Paul & Bertolini, Luca, 2011. "An application of the node-place model to explore the spatial development dynamics of station areas in Tokyo," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 4(1), pages 45-58.
    3. B. Berche & C. von Ferber & T. Holovatch & Yu. Holovatch, 2009. "Resilience of public transport networks against attacks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(1), pages 125-137, September.
    4. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    5. Ruifen Sun & Fengjie Xie & Sirui Huang & Yang Shao, 2024. "Construction and Characteristics Analysis of the Xi’an Public Transport Network Considering Single-Mode and Multi-Mode Transferring," Sustainability, MDPI, vol. 16(9), pages 1-19, May.
    6. Jonathan Crockett & Nick Hounsell, 2005. "Role of the Travel Factor Convenience in Rail Travel and a Framework for its Assessment," Transport Reviews, Taylor & Francis Journals, vol. 25(5), pages 535-555, January.
    7. Noland, Robert B & Kunreuther, Howard, 1995. "Short-run and long-run policies for increasing bicycle transportation for daily commuter trips," Transport Policy, Elsevier, vol. 2(1), pages 67-79, January.
    8. Fuquan Pan & Shuai Cheng & Haitao Pan & Shiwei Li & Lixia Zhang & Jinshun Yang, 2024. "Satisfaction Analysis of Urban Rail Transit Based on the Personal Characteristics of Passengers," Sustainability, MDPI, vol. 16(9), pages 1-19, April.
    9. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    10. Sun, Lishan & Huang, Yuchen & Chen, Yanyan & Yao, Liya, 2018. "Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 108(C), pages 12-24.
    11. Lin Zhang & Bai-Bai Fu & Shu-Bin Li, 2016. "Cascading failures coupled model of interdependent double layered public transit network," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(12), pages 1-18, December.
    12. Freke Caset & David S. Vale & Cláudia M. Viana, 2018. "Correction to: Measuring the Accessibility of Railway Stations in the Brussels Regional Express Network: a Node-Place Modeling Approach," Networks and Spatial Economics, Springer, vol. 18(3), pages 531-531, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2019. "Network criticality and the node-place-design model: Classifying metro station areas in Greater London," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    2. Nigro, Antonio & Bertolini, Luca & Moccia, Francesco Domenico, 2019. "Land use and public transport integration in small cities and towns: Assessment methodology and application," Journal of Transport Geography, Elsevier, vol. 74(C), pages 110-124.
    3. Wei Wu & Prasanna Divigalpitiya, 2022. "Assessment of Accessibility and Activity Intensity to Identify Future Development Priority TODs in Hefei City," Land, MDPI, vol. 11(9), pages 1-17, September.
    4. Zhang, Lin & Lu, Jian & Fu, Bai-bai & Li, Shu-bin, 2019. "A cascading failures model of weighted bus transit route network under route failure perspective considering link prediction effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1315-1330.
    5. Pezeshknejad, Parsa & Monajem, Saeed & Mozafari, Hamid, 2020. "Evaluating sustainability and land use integration of BRT stations via extended node place model, an application on BRT stations of Tehran," Journal of Transport Geography, Elsevier, vol. 82(C).
    6. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    7. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2021. "Understanding the roles of rail stations: Insights from network approaches in the London metropolitan area," Journal of Transport Geography, Elsevier, vol. 94(C).
    8. Rayane Nemroudi & Armando Ortuño & Maria Flor & Begoña Guirao, 2024. "Application of the Node–Place Model in Algiers (Algeria)," Sustainability, MDPI, vol. 16(15), pages 1-16, July.
    9. Su, Shiliang & Zhang, Hui & Wang, Miao & Weng, Min & Kang, Mengjun, 2021. "Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications," Journal of Transport Geography, Elsevier, vol. 90(C).
    10. Zheng, Lingwei & Austwick, Martin Zaltz, 2023. "Classifying station areas in greater Manchester using the node-place-design model: A comparative analysis with system centrality and green space coverage," Journal of Transport Geography, Elsevier, vol. 112(C).
    11. Doina Olaru & Simon Moncrieff & Gary McCarney & Yuchao Sun & Tristan Reed & Cate Pattison & Brett Smith & Sharon Biermann, 2019. "Place vs. Node Transit: Planning Policies Revisited," Sustainability, MDPI, vol. 11(2), pages 1-14, January.
    12. Eizaguirre-Iribar, Arritokieta & Grijalba, Olatz, 2020. "A methodological proposal for the analysis of disused railway lines as territorial structuring elements: The case study of the Vasco-Navarro railway," Land Use Policy, Elsevier, vol. 91(C).
    13. Yingqun Zhang & Rui Song & Rob van Nes & Shiwei He & Weichuan Yin, 2019. "Identifying Urban Structure Based on Transit-Oriented Development," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    14. Freke Caset & David S. Vale & Cláudia M. Viana, 2018. "Measuring the Accessibility of Railway Stations in the Brussels Regional Express Network: a Node-Place Modeling Approach," Networks and Spatial Economics, Springer, vol. 18(3), pages 495-530, September.
    15. Tianyue Wan & Wei Lu & Xiaodong Na & Wenzhi Rong, 2024. "Non-Linear Impact of Economic Performance on Social Equity in Rail Transit Station Areas," Sustainability, MDPI, vol. 16(15), pages 1-27, July.
    16. Lahoorpoor, Bahman & Levinson, David M., 2020. "Catchment if you can: The effect of station entrance and exit locations on accessibility," Journal of Transport Geography, Elsevier, vol. 82(C).
    17. Jeffrey, Dana & Boulangé, Claire & Giles-Corti, Billie & Washington, Simon & Gunn, Lucy, 2019. "Using walkability measures to identify train stations with the potential to become transit oriented developments located in walkable neighbourhoods," Journal of Transport Geography, Elsevier, vol. 76(C), pages 221-231.
    18. Verachtert, Els & Mayeres, Inge & Vermeiren, Karolien & Van der Meulen, Maarten & Vanhulsel, Marlies & Vanderstraeten, Geoffrey & Loris, Isabelle & Mertens, Geert & Engelen, Guy & Poelmans, Lien, 2023. "Mapping regional accessibility of public transport and services in support of spatial planning: A case study in Flanders," Land Use Policy, Elsevier, vol. 133(C).
    19. Zhou, Mingzhi & Zhou, Jiali & Zhou, Jiangping & Lei, Shuyu & Zhao, Zhan, 2023. "Introducing social contacts into the node-place model: A case study of Hong Kong," Journal of Transport Geography, Elsevier, vol. 107(C).
    20. Zhang, Lin & Xu, Min & Wang, Shuaian, 2023. "Quantifying bus route service disruptions under interdependent cascading failures of a multimodal public transit system based on an improved coupled map lattice model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9884-:d:1519794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.