IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v112y2023ics0966692323001850.html
   My bibliography  Save this article

Classifying station areas in greater Manchester using the node-place-design model: A comparative analysis with system centrality and green space coverage

Author

Listed:
  • Zheng, Lingwei
  • Austwick, Martin Zaltz

Abstract

Transit-oriented development (TOD) is receiving increasing attention from planners and policymakers as an essential strategy for addressing urban travel inequalities and air pollution. As an analytical method based on the conceptual construct of TOD, the node-place-design (NPD) model is utilized by researchers to assess TOD in urban public transport systems. However, current research prioritizes local perspectives of station development and fails to identify the functions of stations at the system level. In addition, few TOD-related analyses have considered the ecological aspects of cities. In the present study, we used an NPD model to evaluate TOD development at rail stations in Greater Manchester. We incorporated extended indicators of systemic importance and green space coverage in our analysis to provide additional insight into the model. First, we found a low level of TOD integration around stations in Greater Manchester, and some differences in development levels around train stations and Metrolink stations. Second, a comparison with the extended system importance indicators revealed the potential for significant differences in the NPD index and the system importance indicators of stations. This identified some stations that have the potential to take on new routes and some areas that are worthy of transit-oriented development. Finally, we found a specific negative correlation between the NPD index and the green space indicator. This indicated that the TOD model sacrifices green space to a certain extent and demonstrated the importance of including ecological indicators in the TOD assessment. The present study provides additional insight into the NPD model by introducing extended systemic and ecological indicators.

Suggested Citation

  • Zheng, Lingwei & Austwick, Martin Zaltz, 2023. "Classifying station areas in greater Manchester using the node-place-design model: A comparative analysis with system centrality and green space coverage," Journal of Transport Geography, Elsevier, vol. 112(C).
  • Handle: RePEc:eee:jotrge:v:112:y:2023:i:c:s0966692323001850
    DOI: 10.1016/j.jtrangeo.2023.103713
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692323001850
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2023.103713?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. Zemp, Stefan & Stauffacher, Michael & Lang, Daniel J. & Scholz, Roland W., 2011. "Classifying railway stations for strategic transport and land use planning: Context matters!," Journal of Transport Geography, Elsevier, vol. 19(4), pages 670-679.
    3. Jacobson, Justin & Forsyth, Ann, 2008. "Seven American TODs: Good Practices for Urban Design in Transit-Oriented Development Projects," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 1(2), pages 51-88.
    4. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2014. "Advance transit oriented development typology: case study in Brisbane, Australia," Journal of Transport Geography, Elsevier, vol. 34(C), pages 54-70.
    5. Sara Khoshkar & Berit Balfors & Antoienette Wärnbäck, 2018. "Planning for green qualities in the densification of suburban Stockholm – opportunities and challenges," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(14), pages 2613-2635, December.
    6. Reusser, Dominik E. & Loukopoulos, Peter & Stauffacher, Michael & Scholz, Roland W., 2008. "Classifying railway stations for sustainable transitions – balancing node and place functions," Journal of Transport Geography, Elsevier, vol. 16(3), pages 191-202.
    7. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2019. "Network criticality and the node-place-design model: Classifying metro station areas in Greater London," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    8. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    9. Su, Shiliang & Zhang, Hui & Wang, Miao & Weng, Min & Kang, Mengjun, 2021. "Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications," Journal of Transport Geography, Elsevier, vol. 90(C).
    10. Tadeusz Ciupa & Roman Suligowski, 2021. "Green-Blue Spaces and Population Density versus COVID-19 Cases and Deaths in Poland," IJERPH, MDPI, vol. 18(12), pages 1-17, June.
    11. Michelle C. Kondo & Jaime M. Fluehr & Thomas McKeon & Charles C. Branas, 2018. "Urban Green Space and Its Impact on Human Health," IJERPH, MDPI, vol. 15(3), pages 1-28, March.
    12. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    13. Knowles, Richard D., 2012. "Transit Oriented Development in Copenhagen, Denmark: from the Finger Plan to Ørestad," Journal of Transport Geography, Elsevier, vol. 22(C), pages 251-261.
    14. Chorus, Paul & Bertolini, Luca, 2011. "An application of the node-place model to explore the spatial development dynamics of station areas in Tokyo," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 4(1), pages 45-58.
    15. Mei-Po Kwan & Tim Schwanen, 2016. "Geographies of Mobility," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 106(2), pages 243-256, March.
    16. Gill Hubbard & Chantal den Daas & Marie Johnston & Peter Murchie & Catharine Ward Thompson & Diane Dixon, 2021. "Are Rurality, Area Deprivation, Access to Outside Space, and Green Space Associated with Mental Health during the COVID-19 Pandemic? A Cross Sectional Study (CHARIS-E)," IJERPH, MDPI, vol. 18(8), pages 1-17, April.
    17. Li, Zekun & Han, Zixuan & Xin, Jing & Luo, Xin & Su, Shiliang & Weng, Min, 2019. "Transit oriented development among metro station areas in Shanghai, China: Variations, typology, optimization and implications for land use planning," Land Use Policy, Elsevier, vol. 82(C), pages 269-282.
    18. Bertolini, L. & le Clercq, F. & Kapoen, L., 2005. "Sustainable accessibility: a conceptual framework to integrate transport and land use plan-making. Two test-applications in the Netherlands and a reflection on the way forward," Transport Policy, Elsevier, vol. 12(3), pages 207-220, May.
    19. Caset, Freke & Blainey, Simon & Derudder, Ben & Boussauw, Kobe & Witlox, Frank, 2020. "Integrating node-place and trip end models to explore drivers of rail ridership in Flanders, Belgium," Journal of Transport Geography, Elsevier, vol. 87(C).
    20. Jin, Jian Gang & Tang, Loon Ching & Sun, Lijun & Lee, Der-Horng, 2014. "Enhancing metro network resilience via localized integration with bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 17-30.
    21. Liaqat Ali & Ahsan Nawaz & Shahid Iqbal & Muhammad Aamir Basheer & Javaria Hameed & Gadah Albasher & Syyed Adnan Raheel Shah & Yong Bai, 2021. "Dynamics of Transit Oriented Development, Role of Greenhouse Gases and Urban Environment: A Study for Management and Policy," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    22. Jun, Myung-Jin & Choi, Keechoo & Jeong, Ji-Eun & Kwon, Ki-Hyun & Kim, Hee-Jae, 2015. "Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul," Journal of Transport Geography, Elsevier, vol. 48(C), pages 30-40.
    23. Knowles, Richard D., 2021. "The mismatch between strategic planning and sustainable transport: The case of Greater Manchester’s Spatial Framework 2019," Journal of Transport Geography, Elsevier, vol. 92(C).
    24. Sybil Derrible, 2012. "Network Centrality of Metro Systems," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    25. Lyu, Guowei & Bertolini, Luca & Pfeffer, Karin, 2016. "Developing a TOD typology for Beijing metro station areas," Journal of Transport Geography, Elsevier, vol. 55(C), pages 40-50.
    26. Wei Huang & Wann-Ming Wey, 2019. "Green Urbanism Embedded in TOD for Urban Built Environment Planning and Design," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    27. Sallis, James F. & Saelens, Brian E. & Frank, Lawrence D. & Conway, Terry L. & Slymen, Donald J. & Cain, Kelli L. & Chapman, James E. & Kerr, Jacqueline, 2009. "Neighborhood built environment and income: Examining multiple health outcomes," Social Science & Medicine, Elsevier, vol. 68(7), pages 1285-1293, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Shiliang & Zhang, Hui & Wang, Miao & Weng, Min & Kang, Mengjun, 2021. "Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications," Journal of Transport Geography, Elsevier, vol. 90(C).
    2. Papa, Enrica & Bertolini, Luca, 2015. "Accessibility and Transit-Oriented Development in European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 47(C), pages 70-83.
    3. Liao, Cong & Scheuer, Bronte, 2022. "Evaluating the performance of transit-oriented development in Beijing metro station areas: Integrating morphology and demand into the node-place model," Journal of Transport Geography, Elsevier, vol. 100(C).
    4. Jeffrey, Dana & Boulangé, Claire & Giles-Corti, Billie & Washington, Simon & Gunn, Lucy, 2019. "Using walkability measures to identify train stations with the potential to become transit oriented developments located in walkable neighbourhoods," Journal of Transport Geography, Elsevier, vol. 76(C), pages 221-231.
    5. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2019. "Network criticality and the node-place-design model: Classifying metro station areas in Greater London," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    6. Choi, Yunkyung & Guhathakurta, Subhrajit, 2024. "Unraveling the diversity in transit-oriented development," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    7. Wei Wu & Prasanna Divigalpitiya, 2022. "Assessment of Accessibility and Activity Intensity to Identify Future Development Priority TODs in Hefei City," Land, MDPI, vol. 11(9), pages 1-17, September.
    8. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).
    9. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    10. Nigro, Antonio & Bertolini, Luca & Moccia, Francesco Domenico, 2019. "Land use and public transport integration in small cities and towns: Assessment methodology and application," Journal of Transport Geography, Elsevier, vol. 74(C), pages 110-124.
    11. Vale, David S., 2015. "Transit-oriented development, integration of land use and transport, and pedestrian accessibility: Combining node-place model with pedestrian shed ratio to evaluate and classify station areas in Lisbo," Journal of Transport Geography, Elsevier, vol. 45(C), pages 70-80.
    12. Chen, Zhiheng & Li, Peiran & Jin, YanXiu & Bharule, Shreyas & Jia, Ning & Li, Wenjing & Song, Xuan & Shibasaki, Ryosuke & Zhang, Haoran, 2023. "Using mobile phone big data to identify inequity of aging groups in transit-oriented development station usage: A case of Tokyo," Transport Policy, Elsevier, vol. 132(C), pages 65-75.
    13. Yingqun Zhang & Rui Song & Rob van Nes & Shiwei He & Weichuan Yin, 2019. "Identifying Urban Structure Based on Transit-Oriented Development," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    14. Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
    15. Pezeshknejad, Parsa & Monajem, Saeed & Mozafari, Hamid, 2020. "Evaluating sustainability and land use integration of BRT stations via extended node place model, an application on BRT stations of Tehran," Journal of Transport Geography, Elsevier, vol. 82(C).
    16. Liu, Yunzhe & Singleton, Alex & Arribas-Bel, Daniel, 2020. "Considering context and dynamics: A classification of transit-orientated development for New York City," Journal of Transport Geography, Elsevier, vol. 85(C).
    17. Ying Liang & Wei Song & Xiaofeng Dong, 2021. "Evaluating the Space Use of Large Railway Hub Station Areas in Beijing toward Integrated Station-City Development," Land, MDPI, vol. 10(11), pages 1-22, November.
    18. Li, Zekun & Han, Zixuan & Xin, Jing & Luo, Xin & Su, Shiliang & Weng, Min, 2019. "Transit oriented development among metro station areas in Shanghai, China: Variations, typology, optimization and implications for land use planning," Land Use Policy, Elsevier, vol. 82(C), pages 269-282.
    19. Lee, Jinwoo (Brian) & Salih, Samal Hama, 2024. "Passive transit accessibility: Modelling and application for transit gap analysis and station area assessment," Journal of Transport Geography, Elsevier, vol. 114(C).
    20. Higgins, Christopher D. & Kanaroglou, Pavlos S., 2016. "A latent class method for classifying and evaluating the performance of station area transit-oriented development in the Toronto region," Journal of Transport Geography, Elsevier, vol. 52(C), pages 61-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:112:y:2023:i:c:s0966692323001850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.