IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p9851-d1519058.html
   My bibliography  Save this article

Surrogate Modeling for Solving OPF: A Review

Author

Listed:
  • Sina Mohammadi

    (Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA)

  • Van-Hai Bui

    (Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA)

  • Wencong Su

    (Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA)

  • Bin Wang

    (Sustainable Energy and Environmental Systems, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA)

Abstract

The optimal power flow (OPF) problem, characterized by its inherent complexity and strict constraints, has traditionally been approached using analytical techniques. OPF enhances power system sustainability by minimizing operational costs, reducing emissions, and facilitating the integration of renewable energy sources through optimized resource allocation and environmentally aligned constraints. However, the evolving nature of power grids, including the integration of distributed generation (DG), increasing uncertainties, changes in topology, and load variability, demands more frequent OPF solutions from grid operators. While conventional methods remain effective, their efficiency and accuracy degrade as computational demands increase. To address these limitations, there is growing interest in the use of data-driven surrogate models. This paper presents a critical review of such models, discussing their limitations and the solutions proposed in the literature. It introduces both Analytical Surrogate Models (ASMs) and learned surrogate models (LSMs) for OPF, providing a thorough analysis of how they can be applied to solve both DC and AC OPF problems. The review also evaluates the development of LSMs for OPF, from initial implementations addressing specific aspects of the problem to more advanced approaches capable of handling topology changes and contingencies. End-to-end and hybrid LSMs are compared based on their computational efficiency, generalization capabilities, and accuracy, and detailed insights are provided. This study includes an empirical comparison of two ASMs and LSMs applied to the IEEE standard six-bus system, demonstrating the key distinctions between these models for small-scale grids and discussing the scalability of LSMs for more complex systems. This comprehensive review aims to serve as a critical resource for OPF researchers and academics, facilitating progress in energy efficiency and providing guidance on the future direction of OPF solution methodologies.

Suggested Citation

  • Sina Mohammadi & Van-Hai Bui & Wencong Su & Bin Wang, 2024. "Surrogate Modeling for Solving OPF: A Review," Sustainability, MDPI, vol. 16(22), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9851-:d:1519058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/9851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/9851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen Frank & Steffen Rebennack, 2016. "An introduction to optimal power flow: Theory, formulation, and examples," IISE Transactions, Taylor & Francis Journals, vol. 48(12), pages 1172-1197, December.
    2. Tang, Jia & Wang, Dan & Wang, Xuyang & Jia, Hongjie & Wang, Chengshan & Huang, Renle & Yang, Zhanyong & Fan, Menghua, 2017. "Study on day-ahead optimal economic operation of active distribution networks based on Kriging model assisted particle swarm optimization with constraint handling techniques," Applied Energy, Elsevier, vol. 204(C), pages 143-162.
    3. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    4. Bozhen Jiang & Qin Wang & Shengyu Wu & Yidi Wang & Gang Lu, 2024. "Advancements and Future Directions in the Application of Machine Learning to AC Optimal Power Flow: A Critical Review," Energies, MDPI, vol. 17(6), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    2. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    3. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.
    4. Marcel Sarstedt & Leonard Kluß & Johannes Gerster & Tobias Meldau & Lutz Hofmann, 2021. "Survey and Comparison of Optimization-Based Aggregation Methods for the Determination of the Flexibility Potentials at Vertical System Interconnections," Energies, MDPI, vol. 14(3), pages 1-27, January.
    5. Konstantinos Kotsalos & Ismael Miranda & Nuno Silva & Helder Leite, 2019. "A Horizon Optimization Control Framework for the Coordinated Operation of Multiple Distributed Energy Resources in Low Voltage Distribution Networks," Energies, MDPI, vol. 12(6), pages 1-27, March.
    6. Abdullah Khan & Hashim Hizam & Noor Izzri bin Abdul Wahab & Mohammad Lutfi Othman, 2020. "Optimal power flow using hybrid firefly and particle swarm optimization algorithm," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    7. Diego Larrahondo & Ricardo Moreno & Harold R. Chamorro & Francisco Gonzalez-Longatt, 2021. "Comparative Performance of Multi-Period ACOPF and Multi-Period DCOPF under High Integration of Wind Power," Energies, MDPI, vol. 14(15), pages 1-15, July.
    8. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    9. Adnan Khattak & Rasool Bukhsh & Sheraz Aslam & Ayman Yafoz & Omar Alghushairy & Raed Alsini, 2022. "A Hybrid Deep Learning-Based Model for Detection of Electricity Losses Using Big Data in Power Systems," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    10. Ottenburger, Sadeeb Simon & Çakmak, Hüseyin Kemal & Jakob, Wilfried & Blattmann, Andreas & Trybushnyi, Dmytro & Raskob, Wolfgang & Kühnapfel, Uwe & Hagenmeyer, Veit, 2020. "A novel optimization method for urban resilient and fair power distribution preventing critical network states," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).
    11. Sheikhahmadi, P. & Bahramara, S. & Moshtagh, J. & Yazdani Damavandi, M., 2018. "A risk-based approach for modeling the strategic behavior of a distribution company in wholesale energy market," Applied Energy, Elsevier, vol. 214(C), pages 24-38.
    12. Zhang, Jingrui & Li, Zhuoyun & Wang, Beibei, 2021. "Within-day rolling optimal scheduling problem for active distribution networks by multi-objective evolutionary algorithm based on decomposition integrating with thought of simulated annealing," Energy, Elsevier, vol. 223(C).
    13. Jonatan Pinkse & René Bohnsack, 2021. "Sustainable product innovation and changing consumer behavior: Sustainability affordances as triggers of adoption and usage," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 3120-3130, November.
    14. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    15. Poggi, Francesca & Amado, Miguel, 2024. "The spatial dimension of energy consumption in cities," Energy Policy, Elsevier, vol. 187(C).
    16. Guo, Bowei & Weeks, Melvyn, 2022. "Dynamic tariffs, demand response, and regulation in retail electricity markets," Energy Economics, Elsevier, vol. 106(C).
    17. Pranjal Pragya Verma & Mohammad Reza Hesamzadeh & Steffen Rebennack & Derek Bunn & K. Shanti Swarup & Dipti Srinivasan, 2024. "Optimal investment by large consumers in an electricity market with generator market power," Computational Management Science, Springer, vol. 21(1), pages 1-56, June.
    18. Zhongyang Zhao & Caisheng Wang & Masoud H. Nazari, 2024. "Revenue Analysis of Stationary and Transportable Battery Storage for Power Systems: A Market Participant Perspective," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    19. Furió, Dolores & Moreno-del-Castillo, Javier, 2024. "Dynamic demand response to electricity prices: Evidence from the Spanish retail market," Utilities Policy, Elsevier, vol. 88(C).
    20. Nouha Dkhili & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Resilient Predictive Control Coupled with a Worst-Case Scenario Approach for a Distributed-Generation-Rich Power Distribution Grid," Clean Technol., MDPI, vol. 3(3), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9851-:d:1519058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.