IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p9835-d1518695.html
   My bibliography  Save this article

The Impact of Seasonal Climate on Dryland Vegetation NPP: The Mediating Role of Phenology

Author

Listed:
  • Xian Liu

    (School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China)

  • Hengkai Li

    (School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China)

  • Yanbing Zhou

    (Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Yang Yu

    (School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China)

  • Xiuli Wang

    (School of Economics and Management, Jiangxi University of Science and Technology, Ganzhou 341000, China)

Abstract

Dryland ecosystems are highly sensitive to climate change, making vegetation monitoring crucial for understanding ecological dynamics in these regions. In recent years, climate change, combined with large-scale ecological restoration efforts, has led significant greening in China’s arid areas. However, the mechanisms through which seasonal climate variations regulate vegetation growth are not yet fully understood. This study hypothesizes that seasonal climate change affects net primary productivity (NPP) of vegetation by influencing phenology. We focused on China’s Windbreak and Sand-Fixation Ecological Function Conservation Areas (WSEFCAs) as representative regions of dryland vegetation. The Carnegie–Ames–Stanford Approach (CASA) model was used to estimate vegetation NPP from 2000 to 2020. To extract phenological information, NDVI data were processed using Savitzky–Golay (S–G) filtering and threshold methods to determine the start of season (SOS) and end of season (EOS). The structural equation model (SEM) was constructed to quantitatively assess the contributions of climate change (temperature and precipitation) and phenology to variations in vegetation NPP, identifying the pathways of influence. The results indicate that the average annual NPP in WSEFCAs increased from 55.55 gC/(m 2 ·a) to 75.01 gC/(m 2 ·a), exhibiting uneven spatial distribution. The pathways through which seasonal climate affects vegetation NPP are more complex and uneven. Summer precipitation directly promoted NPP growth (direct effect = 0.243, p < 0.001) while also indirectly enhancing NPP by significantly advancing SOS (0.433, p < 0.001) and delaying EOS (−0.271, p < 0.001), with an indirect effect of 0.133. This finding highlights the critical role of phenology in vegetation growth, particularly in regions with substantial seasonal climate fluctuations. Although the overall ecological environment of WSEFCAs has improved, significant regional disparities remain, especially in northwestern China. This study introduces causal mediation analysis to systematically explore the mechanisms through which seasonal climate change impacts vegetation NPP in WSEFCAs, providing new insights into the broader implications of climate change and offering scientific support for ecological restoration and management strategies in arid regions.

Suggested Citation

  • Xian Liu & Hengkai Li & Yanbing Zhou & Yang Yu & Xiuli Wang, 2024. "The Impact of Seasonal Climate on Dryland Vegetation NPP: The Mediating Role of Phenology," Sustainability, MDPI, vol. 16(22), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9835-:d:1518695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/9835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/9835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang Li & Wen Zhang & Christopher R. Schwalm & Pierre Gentine & William K. Smith & Philippe Ciais & John S. Kimball & Antonio Gazol & Steven A. Kannenberg & Anping Chen & Shilong Piao & Hongyan Liu & , 2023. "Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems," Nature Climate Change, Nature, vol. 13(2), pages 182-188, February.
    2. Lei Chen & Heikki Hänninen & Sergio Rossi & Nicholas G. Smith & Stephanie Pau & Zhiyong Liu & Guanqiao Feng & Jie Gao & Jianquan Liu, 2020. "Leaf senescence exhibits stronger climatic responses during warm than during cold autumns," Nature Climate Change, Nature, vol. 10(8), pages 777-780, August.
    3. Tong Dong & Jing Liu & Mingjie Shi & Panxing He & Ping Li & Dahai Liu, 2024. "Seasonal Scale Climatic Factors on Grassland Phenology in Arid and Semi-Arid Zones," Land, MDPI, vol. 13(5), pages 1-21, May.
    4. Mengyao Tuo & Guoce Xu & Tiegang Zhang & Jianying Guo & Mengmeng Zhang & Fengyou Gu & Bin Wang & Jiao Yi, 2024. "Contribution of Climatic Factors and Human Activities to Vegetation Changes in Arid Grassland," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    5. Benjamin Poulter & David Frank & Philippe Ciais & Ranga B. Myneni & Niels Andela & Jian Bi & Gregoire Broquet & Josep G. Canadell & Frederic Chevallier & Yi Y. Liu & Steven W. Running & Stephen Sitch , 2014. "Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle," Nature, Nature, vol. 509(7502), pages 600-603, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Ding & Zhipeng Li & Heyu Zhang & Pu Zhang & Xiaoming Cao & Yiming Feng, 2022. "Quantifying the Aboveground Biomass (AGB) of Gobi Desert Shrub Communities in Northwestern China Based on Unmanned Aerial Vehicle (UAV) RGB Images," Land, MDPI, vol. 11(4), pages 1-17, April.
    2. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Qing Huang & Weimin Ju & Fangyi Zhang & Qian Zhang, 2019. "Roles of Climate Change and Increasing CO 2 in Driving Changes of Net Primary Productivity in China Simulated Using a Dynamic Global Vegetation Model," Sustainability, MDPI, vol. 11(15), pages 1-20, August.
    6. Gabriela Guillen-Cruz & Emmanuel F. Campuzano & René Juárez-Altamirano & Karla Liliana López-García & Roberto Torres-Arreola & Dulce Flores-Rentería, 2023. "Interannual Variation and Control Factors of Soil Respiration in Xeric Shrubland and Agricultural Sites from the Chihuahuan Desert, Mexico," Land, MDPI, vol. 12(11), pages 1-16, October.
    7. Chen, Yizhao & Fei, Xinran & Groisman, Pavel & Sun, Zhengguo & Zhang, Jianan & Qin, Zhihao, 2019. "Contrasting policy shifts influence the pattern of vegetation production and C sequestration over pasture systems: A regional-scale comparison in Temperate Eurasian Steppe," Agricultural Systems, Elsevier, vol. 176(C).
    8. Lina Liu & Jiansheng Qu & Feng Gao & Tek Narayan Maraseni & Shaojian Wang & Suman Aryal & Zhenhua Zhang & Rong Wu, 2024. "Land Use Carbon Emissions or Sink: Research Characteristics, Hotspots and Future Perspectives," Land, MDPI, vol. 13(3), pages 1-24, February.
    9. Kaiqiang Bao & Haifeng Tian & Min Su & Liping Qiu & Xiaorong Wei & Yanjiang Zhang & Jian Liu & Hailong Gao & Jimin Cheng, 2019. "Stability of Ecosystem CO 2 Flux in Response to Changes in Precipitation in a Semiarid Grassland," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    10. Li, Xiran & Zhu, Zaichun & Zeng, Hui & Piao, Shilong, 2016. "Estimation of gross primary production in China (1982–2010) with multiple ecosystem models," Ecological Modelling, Elsevier, vol. 324(C), pages 33-44.
    11. Qing Gu & Hui Zheng & Li Yao & Min Wang & Mingguo Ma & Xufeng Wang & Xuguang Tang, 2020. "Performance of the Remotely-Derived Products in Monitoring Gross Primary Production across Arid and Semi-Arid Ecosystems in Northwest China," Land, MDPI, vol. 9(9), pages 1-16, August.
    12. Dmuchowski, Wojciech & Baczewska-Dąbrowska, Aneta H. & Gworek, Barbara, 2024. "The role of temperate agroforestry in mitigating climate change: A review," Forest Policy and Economics, Elsevier, vol. 159(C).
    13. Jiao, Yinying & Zhu, Guofeng & Meng, Gaojia & Lu, Siyu & Qiu, Dongdong & Lin, Xinrui & Li, Rui & Wang, Qinqin & Chen, Longhu & Zhao, Ling & Yang, Jiangwei & Sun, Niu, 2023. "Estimating non-productive water loss in irrigated farmland in arid oasis regions: Based on stable isotope data," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Kai Wang & Ana Bastos & Philippe Ciais & Xuhui Wang & Christian Rödenbeck & Pierre Gentine & Frédéric Chevallier & Vincent W. Humphrey & Chris Huntingford & Michael O’Sullivan & Sonia I. Seneviratne, 2022. "Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Jing Peng & Fuqiang Yang & Li Dan & Xiba Tang, 2022. "Estimation of China’s Contribution to Global Greening over the Past Three Decades," Land, MDPI, vol. 11(3), pages 1-16, March.
    16. Li, Jiale & Li, Yu & Yin, Lei & Zhao, Quanhua, 2024. "A novel composite drought index combining precipitation, temperature and evapotranspiration used for drought monitoring in the Huang-Huai-Hai Plain," Agricultural Water Management, Elsevier, vol. 291(C).
    17. Zhongyi Sun & Xiufeng Wang & Haruhiko Yamamoto & Hiroshi Tani & Tangzhe Nie, 2020. "The effects of spatiotemporal patterns of atmospheric CO2 concentration on terrestrial gross primary productivity estimation," Climatic Change, Springer, vol. 163(2), pages 913-930, November.
    18. Sinan Wang & Xigang Xing & Yingjie Wu & Jianying Guo & Mingyang Li & Bin Fu, 2024. "Seasonal Response of the NDVI to the SPEI at Different Time Scales in Yinshanbeilu, Inner Mongolia, China," Land, MDPI, vol. 13(4), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9835-:d:1518695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.