IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p9828-d1518575.html
   My bibliography  Save this article

Has There Been a Recent Warming Slowdown over North China?

Author

Listed:
  • Man Zhang

    (Hebei Key Laboratory of Environmental Change and Ecological Construction, College of Geography Science, Hebei Normal University, Shijiazhuang 050024, China)

  • Chengguo Zhang

    (Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Chinese Academy of Sciences, Shijiazhuang 050021, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Dengpan Xiao

    (Hebei Key Laboratory of Environmental Change and Ecological Construction, College of Geography Science, Hebei Normal University, Shijiazhuang 050024, China)

  • Yaning Chen

    (State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China)

  • Qingxi Zhang

    (School of Land Science and Space Planning, Hebei GEO University, Shijiazhuang 050031, China)

Abstract

The warming slowdown observed between 1998 and 2012 has raised concerns in recent years. To examine the temporal and spatial variations in annual mean temperature (Tmp) as well as 12 extreme temperature indices (ETIs), and to assess the presence of a warming slowdown in North China (NC), we analyzed homogenized daily observational datasets from 79 meteorological stations spanning 1960 to 2020. Additionally, we investigated the influences of 78 atmospheric circulation indices (ACIs) on ETIs during the period of warming slowdown. To compare temperature changes, the study area was divided into three parts based on topographic conditions: Areas I, II, and III. The results revealed significant warming trends in Tmp and the 12 ETIs from 1960 to 2020. Comparing the time frames of 1960–1998, 2012–2020, and 1998–2012, both Tmp and the 12 ETIs displayed a cooling trend in the latter period, confirming the existence of a warming slowdown in NC. Notably, indices derived from daily maximum temperature exhibited higher cooling rates during 1998–2012, with winter contributing most significantly to the cooling trend among the four seasons. The most pronounced warming slowdown was observed in Area I, followed by Area III and Area II. Furthermore, our attribution analysis of ACIs concerning the temperature change indicated that the Asia Polar Vortex Area Index may have had the greatest influence on ETIs from 1960 to 2016. Moreover, the weakening of the Tibet Plateau Index Band and the Asian Latitudinal Circulation Index, and the strengthening of the Eurasian Latitudinal Circulation Index, were closely associated with ETIs during the warming slowdown period in NC. Through this research, we aim to deepen our understanding of climate change in NC and offer a valuable reference for the sustainable development of its natural ecology and social economy.

Suggested Citation

  • Man Zhang & Chengguo Zhang & Dengpan Xiao & Yaning Chen & Qingxi Zhang, 2024. "Has There Been a Recent Warming Slowdown over North China?," Sustainability, MDPI, vol. 16(22), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9828-:d:1518575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/9828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/9828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Kosaka & Shang-Ping Xie, 2013. "Recent global-warming hiatus tied to equatorial Pacific surface cooling," Nature, Nature, vol. 501(7467), pages 403-407, September.
    2. Jiajie Xin & Mingjin Zhan & Bin Xu & Haijun Li & Longfei Zhan, 2023. "Variations of Extreme Temperature Event Indices in Six Temperature Zones in China from 1961 to 2020," Sustainability, MDPI, vol. 15(15), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix Pretis & Michael Mann & Robert Kaufmann, 2015. "Testing competing models of the temperature hiatus: assessing the effects of conditioning variables and temporal uncertainties through sample-wide break detection," Climatic Change, Springer, vol. 131(4), pages 705-718, August.
    2. Claudio, Morana & Giacomo, Sbrana, 2017. "Some Financial Implications of Global Warming: An Empirical Assessment," Working Papers 377, University of Milano-Bicocca, Department of Economics, revised 25 Dec 2017.
    3. Claudio Morana & Giacomo Sbrana, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," Working Papers 2017.09, Fondazione Eni Enrico Mattei.
    4. Kim, Dukpa & Oka, Tatsushi & Estrada, Francisco & Perron, Pierre, 2020. "Inference related to common breaks in a multivariate system with joined segmented trends with applications to global and hemispheric temperatures," Journal of Econometrics, Elsevier, vol. 214(1), pages 130-152.
    5. Yoko Yamagami & Masahiro Watanabe & Masato Mori & Jun Ono, 2022. "Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Xiaolong Shan & Ning Jiang & Weihong Qian, 2015. "Regional heavy rain locations associated with anomalous convergence lines in eastern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1731-1750, July.
    7. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    8. Jing Xu & Ping Zhao & Johnny C. L. Chan & Mingyuan Shi & Chi Yang & Siyu Zhao & Ying Xu & Junming Chen & Ling Du & Jie Wu & Jiaxin Ye & Rui Xing & Huimei Wang & Lu Liu, 2024. "Increasing tropical cyclone intensity in the western North Pacific partly driven by warming Tibetan Plateau," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Claudio, Morana & Giacomo, Sbrana, 2017. "Some Financial Implications of Global Warming: An Empirical Assessment," Working Papers 377, University of Milano-Bicocca, Department of Economics, revised 25 Dec 2017.
    10. Meng Wang & Zhengfeng An, 2022. "Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China," Land, MDPI, vol. 11(8), pages 1-21, July.
    11. Mingna Wu & Tianjun Zhou & Chao Li & Hongmei Li & Xiaolong Chen & Bo Wu & Wenxia Zhang & Lixia Zhang, 2021. "A very likely weakening of Pacific Walker Circulation in constrained near-future projections," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Dukpa Kim & Tatsushi Oka & Francisco Estrada & Pierre Perron, 2017. "Inference Related to Common Breaks in a Multivariate System with Joined Segmented Trends with Applications to Global and Hemispheric Temperatures," Boston University - Department of Economics - Working Papers Series WP2017-003, Boston University - Department of Economics.
    13. Mi-Kyung Sung & Soon-Il An & Jongsoo Shin & Jae-Heung Park & Young-Min Yang & Hyo-Jeong Kim & Minhee Chang, 2023. "Ocean fronts as decadal thermostats modulating continental warming hiatus," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Qinxue Gu & Melissa Gervais & Gokhan Danabasoglu & Who M. Kim & Frederic Castruccio & Elizabeth Maroon & Shang-Ping Xie, 2024. "Wide range of possible trajectories of North Atlantic climate in a warming world," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Xiaona Chen & Shunlin Liang & Yunfeng Cao & Tao He, 2016. "Distribution, attribution, and radiative forcing of snow cover changes over China from 1982 to 2013," Climatic Change, Springer, vol. 137(3), pages 363-377, August.
    16. K. W. Oleson & G. B. Anderson & B. Jones & S. A. McGinnis & B. Sanderson, 2018. "Avoided climate impacts of urban and rural heat and cold waves over the U.S. using large climate model ensembles for RCP8.5 and RCP4.5," Climatic Change, Springer, vol. 146(3), pages 377-392, February.
    17. Na Zhao & Mingxing Chen, 2021. "A Comprehensive Study of Spatiotemporal Variations in Temperature Extremes across China during 1960–2018," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    18. Bruns, Stephan B. & Csereklyei, Zsuzsanna & Stern, David I., 2020. "A multicointegration model of global climate change," Journal of Econometrics, Elsevier, vol. 214(1), pages 175-197.
    19. Yurong Hou & Shang-Ping Xie & Nathaniel C. Johnson & Chunzai Wang & Changhyun Yoo & Kaiqiang Deng & Weijun Sun & Xichen Li, 2024. "Unveiling the Indian Ocean forcing on winter eastern warming – western cooling pattern over North America," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Chang, Yoosoon & Kaufmann, Robert K. & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2020. "Evaluating trends in time series of distributions: A spatial fingerprint of human effects on climate," Journal of Econometrics, Elsevier, vol. 214(1), pages 274-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9828-:d:1518575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.