IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v30y2019i2p304-321.html
   My bibliography  Save this article

Wind power potential for energy sustainability and climate change mitigation: A case study in Taiwan

Author

Listed:
  • Chih-Chun Kung
  • Li-Jiun Chen
  • Tsung-Ju Lee
  • Xianling Jiang
  • Ruiqi Lin

Abstract

According to the latest Taiwan’s energy plan, nuclear power that provides approximately 16% of total electricity will be replaced by renewable energy sources by 2025. Wind power is of particular interest because Taiwan’s maritime climate and constant monsoons make it a feasible alternative that potentially generate a considerable amount of electricity. To better understand how wind power can provide stable electricity output and sequester CO 2 emissions, this study employs the Weibull distribution with a threshold regression model to estimate the electricity potential for 370 scheduled wind farm sites and refine electricity estimation according to observed data from all existing wind farms. The results show that, compared to the theoretical estimation models, our proposed refinement method can, in average, reduce estimating error by 87%. The results indicate that construction of all scheduled sites are not a cost-effective approach, and the government may focus on construction of stations that can generate electricity of more than 12 million kWh per year, if capital rationing do exist. Our insightful results thus convey constructive suggestions regarding sites selection, stability of wind speed, and electricity potential of each site, all of which can be helpful in decision making. It is also noteworthy to point out that unless future climate is far deviated from the observed data, wind power can be an effective substitute of nuclear power.

Suggested Citation

  • Chih-Chun Kung & Li-Jiun Chen & Tsung-Ju Lee & Xianling Jiang & Ruiqi Lin, 2019. "Wind power potential for energy sustainability and climate change mitigation: A case study in Taiwan," Energy & Environment, , vol. 30(2), pages 304-321, March.
  • Handle: RePEc:sae:engenv:v:30:y:2019:i:2:p:304-321
    DOI: 10.1177/0958305X18790956
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X18790956
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X18790956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    2. Hijazi, O. & Munro, S. & Zerhusen, B. & Effenberger, M., 2016. "Review of life cycle assessment for biogas production in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1291-1300.
    3. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    4. Góralczyk, Malgorzata, 2003. "Life-cycle assessment in the renewable energy sector," Applied Energy, Elsevier, vol. 75(3-4), pages 205-211, July.
    5. Gualtieri, Giovanni & Secci, Sauro, 2012. "Methods to extrapolate wind resource to the turbine hub height based on power law: A 1-h wind speed vs. Weibull distribution extrapolation comparison," Renewable Energy, Elsevier, vol. 43(C), pages 183-200.
    6. Chih-Chun Kung & Meng-Shiuh Chang, 2015. "Effect of Agricultural Feedstock to Energy Conversion Rate on Bioenergy and GHG Emissions," Sustainability, MDPI, vol. 7(5), pages 1-15, May.
    7. Gilles Neubert & Matteo M. Savino & Carmen Pedicini, 2010. "Simulation Approach to Optimize Production Costs Through Value Stream Mapping," Post-Print hal-02313241, HAL.
    8. Bortolini, Marco & Gamberi, Mauro & Graziani, Alessandro & Manzini, Riccardo & Pilati, Francesco, 2014. "Performance and viability analysis of small wind turbines in the European Union," Renewable Energy, Elsevier, vol. 62(C), pages 629-639.
    9. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    10. Chang, Tsang-Jung & Tu, Yi-Long, 2007. "Evaluation of monthly capacity factor of WECS using chronological and probabilistic wind speed data: A case study of Taiwan," Renewable Energy, Elsevier, vol. 32(12), pages 1999-2010.
    11. Katsigiannis, Yiannis A. & Stavrakakis, George S., 2014. "Estimation of wind energy production in various sites in Australia for different wind turbine classes: A comparative technical and economic assessment," Renewable Energy, Elsevier, vol. 67(C), pages 230-236.
    12. Myhr, Anders & Bjerkseter, Catho & Ågotnes, Anders & Nygaard, Tor A., 2014. "Levelised cost of energy for offshore floating wind turbines in a life cycle perspective," Renewable Energy, Elsevier, vol. 66(C), pages 714-728.
    13. Ouedraogo, Nadia S., 2013. "Energy consumption and human development: Evidence from a panel cointegration and error correction model," Energy, Elsevier, vol. 63(C), pages 28-41.
    14. Hondo, Hiroki & Moriizumi, Yue, 2017. "Employment creation potential of renewable power generation technologies: A life cycle approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 128-136.
    15. Fthenakis, Vasilis & Kim, Hyung Chul, 2009. "Land use and electricity generation: A life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1465-1474, August.
    16. Fadai, Dawud, 2007. "The feasibility of manufacturing wind turbines in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 536-542, April.
    17. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    18. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    19. Safari, Bonfils & Gasore, Jimmy, 2010. "A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda," Renewable Energy, Elsevier, vol. 35(12), pages 2874-2880.
    20. Ardente, Fulvio & Beccali, Giorgio & Cellura, Maurizio & Lo Brano, Valerio, 2005. "Life cycle assessment of a solar thermal collector," Renewable Energy, Elsevier, vol. 30(7), pages 1031-1054.
    21. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    22. Chih-Chun Kung & Hualin Xie & Tao Wu & Shih-Chih Chen, 2014. "Biofuel for Energy Security: An Examination on Pyrolysis Systems with Emissions from Fertilizer and Land-Use Change," Sustainability, MDPI, vol. 6(2), pages 1-18, January.
    23. Luo, Lin & van der Voet, Ester & Huppes, Gjalt, 2009. "Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1613-1619, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kung, Chih-Chun & McCarl, Bruce A., 2020. "The potential role of renewable electricity generation in Taiwan," Energy Policy, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hondo, Hiroki & Moriizumi, Yue, 2017. "Employment creation potential of renewable power generation technologies: A life cycle approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 128-136.
    2. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    3. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    4. Ali, Babkir & Hedayati-Dezfooli, M. & Gamil, Ahmed, 2023. "Sustainability assessment of alternative energy power generation pathways through the development of impact indicators for water, land, GHG emissions, and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    5. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    6. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    7. Marimuthu, C. & Kirubakaran, V., 2013. "Carbon pay back period for solar and wind energy project installed in India: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 80-90.
    8. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    9. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    10. Varun, & Prakash, Ravi & Bhat, I.K., 2012. "Life cycle greenhouse gas emissions estimation for small hydropower schemes in India," Energy, Elsevier, vol. 44(1), pages 498-508.
    11. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    12. Briones Hidrovo, Andrei & Uche, Javier & Martínez-Gracia, Amaya, 2017. "Accounting for GHG net reservoir emissions of hydropower in Ecuador," Renewable Energy, Elsevier, vol. 112(C), pages 209-221.
    13. Katinas, Vladislovas & Marčiukaitis, Mantas & Gecevičius, Giedrius & Markevičius, Antanas, 2017. "Statistical analysis of wind characteristics based on Weibull methods for estimation of power generation in Lithuania," Renewable Energy, Elsevier, vol. 113(C), pages 190-201.
    14. Joshua M. Pearce, 2012. "Limitations of Nuclear Power as a Sustainable Energy Source," Sustainability, MDPI, vol. 4(6), pages 1-15, June.
    15. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    16. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    17. Catalina Ferat Toscano & Cecilia Martin-del-Campo & Gabriela Moeller-Chavez & Gabriel Leon de los Santos & Juan-Luis François & Daniel Revollo Fernandez, 2019. "Life Cycle Assessment of a Combined-Cycle Gas Turbine with a Focus on the Chemicals Used in Water Conditioning," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    18. Akdag, Seyit Ahmet & Güler, Önder, 2010. "Evaluation of wind energy investment interest and electricity generation cost analysis for Turkey," Applied Energy, Elsevier, vol. 87(8), pages 2574-2580, August.
    19. Gualtieri, Giovanni & Secci, Sauro, 2014. "Extrapolating wind speed time series vs. Weibull distribution to assess wind resource to the turbine hub height: A case study on coastal location in Southern Italy," Renewable Energy, Elsevier, vol. 62(C), pages 164-176.
    20. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:30:y:2019:i:2:p:304-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.