IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9569-d1513037.html
   My bibliography  Save this article

Evaluating Energy Consumption in Residential Buildings in Qatar: A Case Study on Compounds

Author

Listed:
  • Reem Al-Mohammed

    (Department of Architecture and Urban Planning, College of Engineering, Qatar University, Doha P.O Box 2713, Qatar)

  • Djamel Ouahrani

    (Department of Architecture and Urban Planning, College of Engineering, Qatar University, Doha P.O Box 2713, Qatar)

Abstract

The global urgency to cut carbon emissions and pollution is clear. Qatar, rich in fossil fuels, is shifting towards sustainability to reduce carbon emissions. This paper analyzes the energy consumption patterns in residential buildings in Qatar, categorizing them by size and ownership, and establishing energy benchmarks for each building type, offering insights to guide energy efficiency policies. By examining the building size and ownership, the study helps establish benchmarks, supporting Qatar’s sustainability goals in reducing carbon emissions. The study was conducted from 1 January 2019 to 31 December 2021, utilizing data from the Qatar General Electricity and Water Corporation (KAHRAMAA). A total of 172,796 residential buildings were analyzed, with data on building characteristics and demographic information incorporated into the analysis. A quantitative analysis revealed that the building size, ownership, and demographics significantly impact energy consumption, guiding efficiency strategies. The ownership and floor area significantly impact energy consumption. A strong positive correlation (R = 0.97) was found between energy consumption (kWh) and the total built area (m 2 ). The patterns of energy use varied across different residential building types. The findings highlight the importance of considering the ownership and building size in energy efficiency policies. Identifying specific energy use patterns supports the development of targeted strategies. This research offers valuable data on residential energy consumption in Qatar, providing a foundation for energy benchmarks. These benchmarks can guide policy decisions and strategies to enhance energy efficiency and promote sustainability in the residential sector. This study uniquely connects the ownership and building size with energy consumption patterns in Qatar, supporting the development of effective energy policies and contributing to global sustainability goals.

Suggested Citation

  • Reem Al-Mohammed & Djamel Ouahrani, 2024. "Evaluating Energy Consumption in Residential Buildings in Qatar: A Case Study on Compounds," Sustainability, MDPI, vol. 16(21), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9569-:d:1513037
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ammar Abulibdeh & Talal Al-Awadhi & Mohammed Al-Barwani, 2019. "Comparative analysis of the driving forces and spatiotemporal patterns of urbanisation in Muscat, Doha, and Dubai," Development in Practice, Taylor & Francis Journals, vol. 29(5), pages 606-618, July.
    2. repec:sae:envval:v:23:y:2014:i:6:p:641-662 is not listed on IDEAS
    3. Rouleau, Jean & Gosselin, Louis, 2021. "Impacts of the COVID-19 lockdown on energy consumption in a Canadian social housing building," Applied Energy, Elsevier, vol. 287(C).
    4. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2014. "Domestic energy consumption patterns in a hot and humid climate: A multiple-case study analysis," Applied Energy, Elsevier, vol. 114(C), pages 353-365.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Richard & Ye, Zhongnan & Lu, Miaojia & Hsu, Shu-Chien, 2022. "Understanding post-pandemic work-from-home behaviours and community level energy reduction via agent-based modelling," Applied Energy, Elsevier, vol. 322(C).
    2. Lauma Balode & Kristiāna Dolge & Dagnija Blumberga, 2021. "The Contradictions between District and Individual Heating towards Green Deal Targets," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    3. Yugang He & Ziqian Zhang, 2022. "Energy and Economic Effects of the COVID-19 Pandemic: Evidence from OECD Countries," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    4. Gamil Gamal & Omar M. Abdeldayem & Hoda Elattar & Salma Hendy & Mohamed Elsayed Gabr & Mohamed K. Mostafa, 2023. "Remote Sensing Surveillance of NO 2 , SO 2 , CO, and AOD along the Suez Canal Pre- and Post-COVID-19 Lockdown Periods and during the Blockage," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    5. Amin Mohammadi & Mahmoud Reza Saghafi & Mansoureh Tahbaz & Farshad Nasrollahi, 2017. "Effects of Vernacular Climatic Strategies (VCS) on Energy Consumption in Common Residential Buildings in Southern Iran: The Case Study of Bushehr City," Sustainability, MDPI, vol. 9(11), pages 1-26, October.
    6. Hong, Yejin & Yoon, Sungmin & Choi, Sebin, 2023. "Operational signature-based symbolic hierarchical clustering for building energy, operation, and efficiency towards carbon neutrality," Energy, Elsevier, vol. 265(C).
    7. Cerqueira, Pedro André & Pereira da Silva, Patrícia, 2023. "Assessment of the impact of COVID-19 lockdown measures on electricity consumption – Evidence from Portugal and Spain," Energy, Elsevier, vol. 282(C).
    8. Nicolae-Marius Jula & Diana-Mihaela Jula & Bogdan Oancea & Răzvan-Mihail Papuc & Dorin Jula, 2023. "Changes in the Pattern of Weekdays Electricity Real Consumption during the COVID-19 Crisis," Energies, MDPI, vol. 16(10), pages 1-20, May.
    9. Tsai, I-Chun & Chen, Han-Bo & Lin, Che-Chun, 2024. "The ability of energy commodities to hedge the dynamic risk of epidemic black swans," Resources Policy, Elsevier, vol. 89(C).
    10. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2015. "Consensus-based low carbon domestic design framework for sustainable homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 417-432.
    11. Feng Wang & Min Wu, 2021. "The Impacts of COVID-19 on China’s Economy and Energy in the Context of Trade Protectionism," IJERPH, MDPI, vol. 18(23), pages 1-23, December.
    12. Minseok Jang & Hyun Cheol Jeong & Taegon Kim & Dong Hee Suh & Sung-Kwan Joo, 2021. "Empirical Analysis of the Impact of COVID-19 Social Distancing on Residential Electricity Consumption Based on Demographic Characteristics and Load Shape," Energies, MDPI, vol. 14(22), pages 1-15, November.
    13. Kentaka Aruga, 2022. "Effects of the Human-Mobility Change during the COVID-19 Pandemic on Electricity Demand," JRFM, MDPI, vol. 15(10), pages 1-11, September.
    14. Abulibdeh, A. & Jawarneh, R.N. & Al-Awadhi, T. & Abdullah, M.M. & Abulibdeh, R. & El Kenawy, A.M., 2024. "Assessment of carbon footprint in Qatar's electricity sector: A comparative analysis across various building typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    16. Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
    17. Karymshakov, Kamalbek & Azhgaliyeva, Dina & Mishra, Ranjeeta & Aseinov, Dastan, 2022. "Evaluating COVID-19’s Impact on Firm Performance in the CAREC Region Using Night-Time Light Data: Azerbaijan, Georgia, Kazakhstan, and Mongolia," ADBI Working Papers 1332, Asian Development Bank Institute.
    18. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    19. Sergio Gómez Melgar & Miguel Ángel Martínez Bohórquez & José Manuel Andújar Márquez, 2018. "uhuMEB: Design, Construction, and Management Methodology of Minimum Energy Buildings in Subtropical Climates," Energies, MDPI, vol. 11(10), pages 1-34, October.
    20. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9569-:d:1513037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.