IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9453-d1510659.html
   My bibliography  Save this article

Impact of Shortening Real Driving Emission (RDE) Test Trips on CO, NO X , and PN 10 Emissions from Different Vehicles

Author

Listed:
  • Haiguang Zhao

    (State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Laihua Shi

    (China Merchants Testing Vehicle Technology Research Institute Co., Ltd., Chongqing 401329, China)

  • Xiaoliu Xu

    (China Merchants Testing Vehicle Technology Research Institute Co., Ltd., Chongqing 401329, China)

  • Jinshan Qiu

    (China Merchants Testing Vehicle Technology Research Institute Co., Ltd., Chongqing 401329, China)

  • Lan Li

    (China Merchants Testing Vehicle Technology Research Institute Co., Ltd., Chongqing 401329, China)

  • Junfang Wang

    (State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Wenhan Yu

    (National Laboratory of Auto Performance and Emission Test, Beijing Institute of Technology, Beijing 100081, China)

  • Yunshan Ge

    (National Laboratory of Auto Performance and Emission Test, Beijing Institute of Technology, Beijing 100081, China)

Abstract

The real driving emission (RDE) test is the test for vehicle type approval in the China VI emission standard and is one of the most important indicators for assessing the environmental performance of vehicles. To investigate the feasibility of shortening the RDE test trip, we measured emissions of CO, NO X , and PN 10 (i.e., the number of particles above 10 nm in diameter) from gasoline, diesel, and hybrid electric vehicles based on portable emission measurement systems (PEMSs) and analyzed the influence of shortening test trips on pollutant emissions. The results indicated that the CO and PN 10 emission factors of the gasoline vehicle increased by about two times during short trips compared with standard trips, while the NO X emission factor changed insignificantly. The diesel vehicle showed a two-fold increase in NO X and PN 10 emission factors during short trips compared with standard trips, with CO emissions remaining largely unchanged. The short trips of the hybrid electric vehicle doubled CO and PN 10 emission factors and slightly increased NO X emission factors compared with standard trips. The study can aid in improving RDE test efficiency, reducing RDE test cost, and controlling pollutant emissions from newly produced and in-use vehicles, which is crucial for air pollution management and sustainable development.

Suggested Citation

  • Haiguang Zhao & Laihua Shi & Xiaoliu Xu & Jinshan Qiu & Lan Li & Junfang Wang & Wenhan Yu & Yunshan Ge, 2024. "Impact of Shortening Real Driving Emission (RDE) Test Trips on CO, NO X , and PN 10 Emissions from Different Vehicles," Sustainability, MDPI, vol. 16(21), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9453-:d:1510659
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seungcheon Ro & Junhong Park & Myunghwan Shin & Jongtae Lee, 2021. "Developing On-Road NOx Emission Factors for Euro 6b Light-Duty Diesel Trucks in Korean Driving Conditions," Energies, MDPI, vol. 14(4), pages 1-13, February.
    2. Barouch Giechaskiel & Victor Valverde & Anastasios Melas & Michaël Clairotte & Pierre Bonnel & Panagiota Dilara, 2024. "Comparison of the Real-Driving Emissions (RDE) of a Gasoline Direct Injection (GDI) Vehicle at Different Routes in Europe," Energies, MDPI, vol. 17(6), pages 1-19, March.
    3. Sunhee Jang & Ki-Han Song & Daejin Kim & Joonho Ko & Seongkwan Mark Lee & Sabeur Elkosantini & Wonho Suh, 2023. "Road-Section-Based Analysis of Vehicle Emissions and Energy Consumption," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
    4. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    5. Artur Jaworski & Hubert Kuszewski & Krzysztof Lew & Paweł Wojewoda & Krzysztof Balawender & Paweł Woś & Rafał Longwic & Sergii Boichenko, 2023. "Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests," Energies, MDPI, vol. 16(15), pages 1-20, July.
    6. He, Liqiang & Hu, Jingnan & Zhang, Shaojun & Wu, Ye & Zhu, Rencheng & Zu, Lei & Bao, Xiaofeng & Lai, Yitu & Su, Sheng, 2018. "The impact from the direct injection and multi-port fuel injection technologies for gasoline vehicles on solid particle number and black carbon emissions," Applied Energy, Elsevier, vol. 226(C), pages 819-826.
    7. Jieyu Fan & Arsalan Najafi & Jokhio Sarang & Tian Li, 2023. "Analyzing and Optimizing the Emission Impact of Intersection Signal Control in Mixed Traffic," Sustainability, MDPI, vol. 15(22), pages 1-14, November.
    8. Timothy Bodisco & Ali Zare, 2019. "Practicalities and Driving Dynamics of a Real Driving Emissions (RDE) Euro 6 Regulation Homologation Test," Energies, MDPI, vol. 12(12), pages 1-19, June.
    9. Costagliola, Maria Antonietta & Costabile, Marianeve & Prati, Maria Vittoria, 2018. "Impact of road grade on real driving emissions from two Euro 5 diesel vehicles," Applied Energy, Elsevier, vol. 231(C), pages 586-593.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Katarzyna Botwińska & Arkadiusz Gola, 2019. "Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    2. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Tests for Vehicles with Diesel Engines," Energies, MDPI, vol. 14(2), pages 1-30, January.
    3. Jingeun Song & Junepyo Cha, 2021. "Analysis of Driving Dynamics Considering Driving Resistances in On-Road Driving," Energies, MDPI, vol. 14(12), pages 1-16, June.
    4. Mera, Zamir & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2019. "Analysis of the high instantaneous NOx emissions from Euro 6 diesel passenger cars under real driving conditions," Applied Energy, Elsevier, vol. 242(C), pages 1074-1089.
    5. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & Fajle Rabbi Ashik & Mohammad Mahmudul Hassan & Md Tausif Murshed & Md Ashraful Imran & Md Hamidur Rahman & Md Akibur Rahman & Mohammad, 2021. "State-of-the-Art of Establishing Test Procedures for Real Driving Gaseous Emissions from Light- and Heavy-Duty Vehicles," Energies, MDPI, vol. 14(14), pages 1-32, July.
    6. Peter Mako & Andrej Dávid & Patrik Böhm & Sorin Savu, 2021. "Sustainable Transport in the Danube Region," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    7. Branislav Šarkan & Marek Jaśkiewicz & Przemysław Kubiak & Dariusz Tarnapowicz & Michal Loman, 2022. "Exhaust Emissions Measurement of a Vehicle with Retrofitted LPG System," Energies, MDPI, vol. 15(3), pages 1-22, February.
    8. Barouch Giechaskiel & Dimitrios Komnos & Georgios Fontaras, 2021. "Impacts of Extreme Ambient Temperatures and Road Gradient on Energy Consumption and CO 2 Emissions of a Euro 6d-Temp Gasoline Vehicle," Energies, MDPI, vol. 14(19), pages 1-20, September.
    9. Andrzej Ziółkowski & Paweł Fuć & Piotr Lijewski & Aleks Jagielski & Maciej Bednarek & Władysław Kusiak, 2022. "Analysis of Exhaust Emissions from Heavy-Duty Vehicles on Different Applications," Energies, MDPI, vol. 15(21), pages 1-21, October.
    10. Sascha Krysmon & Frank Dorscheidt & Johannes Claßen & Marc Düzgün & Stefan Pischinger, 2021. "Real Driving Emissions—Conception of a Data-Driven Calibration Methodology for Hybrid Powertrains Combining Statistical Analysis and Virtual Calibration Platforms," Energies, MDPI, vol. 14(16), pages 1-27, August.
    11. Dong In Lee & Junhong Park & Myunghwan Shin & Jongtae Lee & Sangki Park, 2022. "Characteristics of Real-World Gaseous Emissions from Construction Machinery," Energies, MDPI, vol. 15(24), pages 1-18, December.
    12. Haas, Christian & Kempa, Karol & Moslener, Ulf, 2023. "Dealing with deep uncertainty in the energy transition: What we can learn from the electricity and transportation sectors," Energy Policy, Elsevier, vol. 179(C).
    13. Kinsella, L. & Stefaniec, A. & Foley, A. & Caulfield, B., 2023. "Pathways to decarbonising the transport sector: The impacts of electrifying taxi fleets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    14. Kazimierz Lejda & Artur Jaworski & Maksymilian Mądziel & Krzysztof Balawender & Adam Ustrzycki & Danylo Savostin-Kosiak, 2021. "Assessment of Petrol and Natural Gas Vehicle Carbon Oxides Emissions in the Laboratory and On-Road Tests," Energies, MDPI, vol. 14(6), pages 1-19, March.
    15. Pierre-Olivier Vandanjon & Emmanuel Vinot, 2020. "Slope Optimization (or “Sloop”): Customized Optimization for Road Longitudinal Profile Eco-Design," Energies, MDPI, vol. 13(24), pages 1-21, December.
    16. Piotr Pryciński & Róża Wawryszczuk & Jarosław Korzeb & Piotr Pielecha, 2023. "Indicator Method for Determining the Emissivity of Road Transport Means from the Point of Supplied Energy," Energies, MDPI, vol. 16(12), pages 1-22, June.
    17. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    18. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Toni Bogdanoff & Murat Tiryakioğlu & Tomas Liljenfors & Anders E. W. Jarfors & Salem Seifeddine & Ehsan Ghassemali, 2023. "On the Effectiveness of Rotary Degassing of Recycled Al-Si Alloy Melts: The Effect on Melt Quality and Energy Consumption for Melt Preparation," Sustainability, MDPI, vol. 15(6), pages 1-10, March.
    20. Rosal, Ignacio del, 2022. "European dieselization: Policy insights from EU car trade," Transport Policy, Elsevier, vol. 115(C), pages 181-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9453-:d:1510659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.