IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9271-d1506502.html
   My bibliography  Save this article

Recycling Fly Ash into Lightweight Aggregate: Life Cycle Assessment and Economic Evaluation of Waste Disposal

Author

Listed:
  • Ji Young Eom

    (Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Republic of Korea)

  • Seong Jun Yang

    (Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Republic of Korea)

  • Myung Jin Lee

    (Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Republic of Korea)

  • Yu Ra Yang

    (Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Republic of Korea)

  • Young Min Wie

    (Department of Materials Engineering, Kyonggi University, Suwon-si 16227, Gyeonggi-do, Republic of Korea)

  • Ki Gang Lee

    (Department of Materials Engineering, Kyonggi University, Suwon-si 16227, Gyeonggi-do, Republic of Korea)

  • Kang Hoon Lee

    (Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Republic of Korea)

Abstract

This study analyzed environmental impacts and economic feasibility to evaluate whether recycling fly ash, which has rarely been addressed in previous studies, as a raw material for lightweight aggregates can be a sustainable waste management alternative. This study presents a comparative analysis of three disposal scenarios: landfill disposal, recycling as cement raw material, and recycling as lightweight aggregate raw material. Nine environmental impacts were assessed through life cycle assessment (LCA): acidification, global warming, eutrophication, photochemical oxidation, stratospheric ozone depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, and terrestrial ecotoxicity. The results showed that the landfill disposal scenario posed the greatest threat to global warming, eutrophication, and marine aquatic ecotoxicity, while the cement scenario had the greatest impact on stratospheric ozone depletion, human toxicity, and other ecotoxicity items while recycling as lightweight aggregate showed the lowest environmental impacts in most items except acidification and photochemical oxidation. Life cycle costing (LCC) analysis was also performed to compare the economic aspects of each scenario. The lightweight aggregate scenario is more energy-intensive and costly, but it has significant economic benefits due to the significant revenues from the products produced. Therefore, even though the cost is high, this scenario is considered economically advantageous. This study highlights that recycling fly ash into lightweight aggregate reduces environmental impacts, provides economic benefits, and is a better alternative to landfilling and recycling cement raw materials. It will also contribute to promoting sustainable practices of fly ash recycling.

Suggested Citation

  • Ji Young Eom & Seong Jun Yang & Myung Jin Lee & Yu Ra Yang & Young Min Wie & Ki Gang Lee & Kang Hoon Lee, 2024. "Recycling Fly Ash into Lightweight Aggregate: Life Cycle Assessment and Economic Evaluation of Waste Disposal," Sustainability, MDPI, vol. 16(21), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9271-:d:1506502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. José Pedro Carvalho & Fernanda Schmitd Villaschi & Luís Bragança, 2021. "Assessing Life Cycle Environmental and Economic Impacts of Building Construction Solutions with BIM," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    2. Martínez, E. & Blanco, J. & Jiménez, E. & Saenz-Díez, J.C. & Sanz, F., 2015. "Comparative evaluation of life cycle impact assessment software tools through a wind turbine case study," Renewable Energy, Elsevier, vol. 74(C), pages 237-246.
    3. Huang, T.Y. & Chiueh, P.T. & Lo, S.L., 2017. "Life-cycle environmental and cost impacts of reusing fly ash," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 255-260.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seong-Jun Yang & Ji-Young Eom & Myung-Jin Lee & Dae-Hwan Hwang & Won-Bin Park & Young-Min Wie & Ki-Gang Lee & Kang-Hoon Lee, 2023. "Comparative Environmental Evaluation of Sewage Sludge Treatment and Aggregate Production Process by Life Cycle Assessment," Sustainability, MDPI, vol. 16(1), pages 1-17, December.
    2. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    3. Weiguo Fan & Peng Zhang & Zihan Xu & Hejie Wei & Nachuan Lu & Xuechao Wang & Boqi Weng & Zhongdian Chen & Feilong Wu & Xiaobin Dong, 2018. "Life Cycle Environmental Impact Assessment of Circular Agriculture: A Case Study in Fuqing, China," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    4. Steffen Kiemel & Chantal Rietdorf & Maximilian Schutzbach & Robert Miehe, 2022. "How to Simplify Life Cycle Assessment for Industrial Applications—A Comprehensive Review," Sustainability, MDPI, vol. 14(23), pages 1-26, November.
    5. Zhonghao Chen & Lin Chen & Xingyang Zhou & Lepeng Huang & Malindu Sandanayake & Pow-Seng Yap, 2024. "Recent Technological Advancements in BIM and LCA Integration for Sustainable Construction: A Review," Sustainability, MDPI, vol. 16(3), pages 1-30, February.
    6. Fernando E. Garcia-Muiña & Rocío González-Sánchez & Anna Maria Ferrari & Davide Settembre-Blundo, 2018. "The Paradigms of Industry 4.0 and Circular Economy as Enabling Drivers for the Competitiveness of Businesses and Territories: The Case of an Italian Ceramic Tiles Manufacturing Company," Social Sciences, MDPI, vol. 7(12), pages 1-31, December.
    7. Ana Elduque & Carlos Javierre & Daniel Elduque & Ángel Fernández, 2015. "LCI Databases Sensitivity Analysis of the Environmental Impact of the Injection Molding Process," Sustainability, MDPI, vol. 7(4), pages 1-9, March.
    8. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    9. Weiguo Fan & Nan Chen & Ximeng Li & Hejie Wei & Xuechao Wang, 2020. "Empirical Research on the Process of Land Resource-Asset-Capitalization—A Case Study of Yanba, Jiangjin District, Chongqing," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    10. Oluwafemi E. Ige & Oludolapo A. Olanrewaju, 2023. "Comparative Life Cycle Assessment of Different Portland Cement Types in South Africa," Clean Technol., MDPI, vol. 5(3), pages 1-20, July.
    11. Ning Yuan & Hao Xu & Yanjun Liu & Kaiqi Tan & Yixiang Bao, 2023. "Synthesis and Environmental Applications of Nanoporous Materials Derived from Coal Fly Ash," Sustainability, MDPI, vol. 15(24), pages 1-27, December.
    12. Francisco Javier Flor-Montalvo & Jorge Luis García-Alcaraz & Agustín Sánchez-Toledo Ledesma & Leandro Álvarez-Kurogi, 2020. "Social-LCA. Methodological Proposal Applied to Physical Activity Program Implementation into Old People’s Routines," Sustainability, MDPI, vol. 12(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9271-:d:1506502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.