IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9145-d1503778.html
   My bibliography  Save this article

Artificial Intelligence in Logistics Optimization with Sustainable Criteria: A Review

Author

Listed:
  • Wenwen Chen

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, Plaza Ferrandiz-Carbonell, 03801 Alcoy, Spain)

  • Yangchongyi Men

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, Plaza Ferrandiz-Carbonell, 03801 Alcoy, Spain)

  • Noelia Fuster

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, Plaza Ferrandiz-Carbonell, 03801 Alcoy, Spain)

  • Celia Osorio

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, Plaza Ferrandiz-Carbonell, 03801 Alcoy, Spain)

  • Angel A. Juan

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, Plaza Ferrandiz-Carbonell, 03801 Alcoy, Spain
    Department of Business Analytics, Euncet Business School, Cami Mas Rubial, 08225 Terrassa, Spain)

Abstract

In recent years, the integration of artificial intelligence (AI) into logistics optimization has gained significant attention, particularly concerning sustainability criteria. This article provides an overview of the diverse AI models and algorithms employed in logistics optimization, with a focus on sustainable practices. The discussion covers several techniques, including generative models, machine learning methods, metaheuristic algorithms, and their synergistic combinations with traditional optimization and simulation methods. By employing AI capabilities, logistics stakeholders can enhance decision-making processes, optimize resource utilization, and minimize environmental impacts. Moreover, this paper identifies and analyzes prominent challenges within sustainable logistics, such as reducing carbon emissions, minimizing waste generation, and optimizing transportation routes while considering ecological factors. Furthermore, the paper explores emerging trends in AI-driven logistics optimization, such as the integration of real-time data analytics, blockchain technology, and autonomous systems, which hold immense potential for enhancing efficiency and sustainability. Finally, the paper outlines future research directions, emphasizing the need for further exploration of hybrid AI approaches, robust optimization frameworks, and scalable solutions that accommodate dynamic and uncertain logistics environments.

Suggested Citation

  • Wenwen Chen & Yangchongyi Men & Noelia Fuster & Celia Osorio & Angel A. Juan, 2024. "Artificial Intelligence in Logistics Optimization with Sustainable Criteria: A Review," Sustainability, MDPI, vol. 16(21), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9145-:d:1503778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tamás Bányai & Béla Illés & Miklós Gubán & Ákos Gubán & Fabian Schenk & Ágota Bányai, 2019. "Optimization of Just-In-Sequence Supply: A Flower Pollination Algorithm-Based Approach," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    2. Canhoto, Ana Isabel & Clear, Fintan, 2020. "Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential," Business Horizons, Elsevier, vol. 63(2), pages 183-193.
    3. Ilya Jackson & Dmitry Ivanov & Alexandre Dolgui & Jafar Namdar, 2024. "Generative artificial intelligence in supply chain and operations management: a capability-based framework for analysis and implementation," International Journal of Production Research, Taylor & Francis Journals, vol. 62(17), pages 6120-6145, September.
    4. Qingyou Yan & Qian Zhang, 2015. "The Optimization of Transportation Costs in Logistics Enterprises with Time-Window Constraints," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-10, August.
    5. Cui, Hailong & Rajagopalan, Sampath & Ward, Amy R., 2020. "Predicting product return volume using machine learning methods," European Journal of Operational Research, Elsevier, vol. 281(3), pages 612-627.
    6. Tang, Shaolong & Wang, Wenjie & Yan, Hong & Hao, Gang, 2015. "Low carbon logistics: Reducing shipment frequency to cut carbon emissions," International Journal of Production Economics, Elsevier, vol. 164(C), pages 339-350.
    7. Rocio de la Torre & Canan G. Corlu & Javier Faulin & Bhakti S. Onggo & Angel A. Juan, 2021. "Simulation, Optimization, and Machine Learning in Sustainable Transportation Systems: Models and Applications," Sustainability, MDPI, vol. 13(3), pages 1-21, February.
    8. De Santis, Roberta & Montanari, Roberto & Vignali, Giuseppe & Bottani, Eleonora, 2018. "An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses," European Journal of Operational Research, Elsevier, vol. 267(1), pages 120-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    2. Bartosz Sawik, 2024. "Optimizing Last-Mile Delivery: A Multi-Criteria Approach with Automated Smart Lockers, Capillary Distribution and Crowdshipping," Logistics, MDPI, vol. 8(2), pages 1-29, May.
    3. Lei Yang & Yiji Cai & Jiahui Hong & Yongqiang Shi & Zhiyong Zhang, 2016. "Urban Distribution Mode Selection under Low Carbon Economy—A Case Study of Guangzhou City," Sustainability, MDPI, vol. 8(7), pages 1-22, July.
    4. Bavaresco, Rodrigo Simon & Nesi, Luan Carlos & Victória Barbosa, Jorge Luis & Antunes, Rodolfo Stoffel & da Rosa Righi, Rodrigo & da Costa, Cristiano André & Vanzin, Mariangela & Dornelles, Daniel & J, 2023. "Machine learning-based automation of accounting services: An exploratory case study," International Journal of Accounting Information Systems, Elsevier, vol. 49(C).
    5. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Fernandez Martinez, Roberto & Lostado Lorza, Ruben & Santos Delgado, Ana Alexandra & Piedra, Nelson, 2021. "Use of classification trees and rule-based models to optimize the funding assignment to research projects: A case study of UTPL," Journal of Informetrics, Elsevier, vol. 15(1).
    7. Ayat Sami ODEIBAT, 2021. "The Effect Of Technology Evolution On The Future Of Jobs," Network Intelligence Studies, Romanian Foundation for Business Intelligence, Editorial Department, issue 17, pages 57-67, June.
    8. El Kihal, Siham & Nurullayev, Namig & Schulze, Christian & Skiera, Bernd, 2021. "A Comparison of Return Rate Calculation Methods: Evidence from 16 Retailers," Journal of Retailing, Elsevier, vol. 97(4), pages 676-696.
    9. Neubert, Mitchell J. & Montañez, George D., 2020. "Virtue as a framework for the design and use of artificial intelligence," Business Horizons, Elsevier, vol. 63(2), pages 195-204.
    10. Graham, Stephanie & Graham, Byron & Holt, Diane, 2018. "The relationship between downstream environmental logistics practices and performance," International Journal of Production Economics, Elsevier, vol. 196(C), pages 356-365.
    11. Li, Chia-Ying & Zhang, Jin-Ting, 2023. "Chatbots or me? Consumers’ switching between human agents and conversational agents," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    12. Alina Köchling & Marius Claus Wehner, 2020. "Discriminated by an algorithm: a systematic review of discrimination and fairness by algorithmic decision-making in the context of HR recruitment and HR development," Business Research, Springer;German Academic Association for Business Research, vol. 13(3), pages 795-848, November.
    13. Kamoonpuri, Sana Zehra & Sengar, Anita, 2023. "Hi, May AI help you? An analysis of the barriers impeding the implementation and use of artificial intelligence-enabled virtual assistants in retail," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    14. Maria A. M. Trindade & Paulo S. A. Sousa & Maria R. A. Moreira, 2022. "Ramping up a heuristic procedure for storage location assignment problem with precedence constraints," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 646-669, September.
    15. Duong, Quang Huy & Zhou, Li & Meng, Meng & Nguyen, Truong Van & Ieromonachou, Petros & Nguyen, Duy Tiep, 2022. "Understanding product returns: A systematic literature review using machine learning and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 243(C).
    16. Basim S. O. Alsaedi, 2024. "A Sustainable Supply Chain Model with a Setup Cost Reduction Policy for Imperfect Items under Learning in a Cloudy Fuzzy Environment," Mathematics, MDPI, vol. 12(10), pages 1-33, May.
    17. Ying Ji & Jianhui Du & Xiaoqing Wu & Zhong Wu & Deqiang Qu & Dan Yang, 2021. "Robust optimization approach to two-echelon agricultural cold chain logistics considering carbon emission and stochastic demand," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13731-13754, September.
    18. Wen Qin & Xiaolie Qi, 2022. "Evaluation of Green Logistics Efficiency in Northwest China," Sustainability, MDPI, vol. 14(11), pages 1-14, June.
    19. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    20. Eliza Nichifor & Adrian Trifan & Elena Mihaela Nechifor, 2021. "Artificial Intelligence in Electronic Commerce: Basic Chatbots and Consumer Journey," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 23(56), pages 1-87, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9145-:d:1503778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.