IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v62y2024i17p6120-6145.html
   My bibliography  Save this article

Generative artificial intelligence in supply chain and operations management: a capability-based framework for analysis and implementation

Author

Listed:
  • Ilya Jackson
  • Dmitry Ivanov
  • Alexandre Dolgui
  • Jafar Namdar

Abstract

This research examines the transformative potential of artificial intelligence (AI) in general and Generative AI (GAI) in particular in supply chain and operations management (SCOM). Through the lens of the resource-based view and based on key AI capabilities such as learning, perception, prediction, interaction, adaptation, and reasoning, we explore how AI and GAI can impact 13 distinct SCOM decision-making areas. These areas include but are not limited to demand forecasting, inventory management, supply chain design, and risk management. With its outcomes, this study provides a comprehensive understanding of AI and GAI's functionality and applications in the SCOM context, offering a practical framework for both practitioners and researchers. The proposed framework systematically identifies where and how AI and GAI can be applied in SCOM, focussing on decision-making enhancement, process optimisation, investment prioritisation, and skills development. Managers can use it as a guidance to evaluate their operational processes and identify areas where AI and GAI can deliver improved efficiency, accuracy, resilience, and overall effectiveness. The research underscores that AI and GAI, with their multifaceted capabilities and applications, open a revolutionary potential and substantial implications for future SCOM practices, innovations, and research.

Suggested Citation

  • Ilya Jackson & Dmitry Ivanov & Alexandre Dolgui & Jafar Namdar, 2024. "Generative artificial intelligence in supply chain and operations management: a capability-based framework for analysis and implementation," International Journal of Production Research, Taylor & Francis Journals, vol. 62(17), pages 6120-6145, September.
  • Handle: RePEc:taf:tprsxx:v:62:y:2024:i:17:p:6120-6145
    DOI: 10.1080/00207543.2024.2309309
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2024.2309309
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2024.2309309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:62:y:2024:i:17:p:6120-6145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.