IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v8y2024i2p52-d1390521.html
   My bibliography  Save this article

Optimizing Last-Mile Delivery: A Multi-Criteria Approach with Automated Smart Lockers, Capillary Distribution and Crowdshipping

Author

Listed:
  • Bartosz Sawik

    (Department of Business Informatics and Engineering Management, School of Management, AGH University of Krakow, 30-059 Krakow, Poland
    Institute of Smart Cities, GILT-OR Group, Department of Statistics, Computer Science and Mathematics, Public University of Navarre, 31006 Pamplona, Spain
    Department of Industrial Engineering and Operations Research, Haas School of Business, University of California at Berkeley, Berkeley, CA 94720, USA)

Abstract

Background : This publication presents a review, multiple criteria optimization models, and a practical example pertaining to the integration of automated smart locker systems, capillary distribution networks, crowdshipping, last-mile delivery and supply chain management. This publication addresses challenges in logistics and transportation, aiming to enhance efficiency, reduce costs and improve customer satisfaction. This study integrates automated smart locker systems, capillary distribution networks, crowdshipping, last-mile delivery and supply chain management. Methods : A review of the existing literature synthesizes key concepts, such as facility location problems, vehicle routing problems and the mathematical programming approach, to optimize supply chain operations. Conceptual optimization models are formulated to solve the complex decision-making process involved in last-mile delivery, considering multiple objectives, including cost minimization, delivery time optimization, service level minimization, capacity optimization, vehicle minimization and resource utilization. Results : The multiple criteria approaches combine the vehicle routing problem and facility location problem, demonstrating the practical applicability of the proposed methodology in a real-world case study within a logistics company. Conclusions : The execution of multi-criteria models optimizes automated smart locker deployment, capillary distribution design, crowdshipping and last-mile delivery strategies, showcasing its effectiveness in the logistics sector.

Suggested Citation

  • Bartosz Sawik, 2024. "Optimizing Last-Mile Delivery: A Multi-Criteria Approach with Automated Smart Lockers, Capillary Distribution and Crowdshipping," Logistics, MDPI, vol. 8(2), pages 1-29, May.
  • Handle: RePEc:gam:jlogis:v:8:y:2024:i:2:p:52-:d:1390521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/8/2/52/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/8/2/52/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhen-Hua Che & Tzu-An Chiang & Yun-Jhen Luo, 2022. "Multiobjective Optimization for Planning the Service Areas of Smart Parcel Locker Facilities in Logistics Last Mile Delivery," Mathematics, MDPI, vol. 10(3), pages 1-22, January.
    2. Jacek B. Krawczyk & Vladimir P. Petkov, 2022. "A Qualitative Game of Interest Rate Adjustments with a Nuisance Agent," Games, MDPI, vol. 13(5), pages 1-24, August.
    3. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    4. Bartosz Sawik, 2023. "Space Mission Risk, Sustainability and Supply Chain: Review, Multi-Objective Optimization Model and Practical Approach," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    5. Dariusz Sala & Kostiantyn Pavlov & Olena Pavlova & Anton Demchuk & Liubomur Matiichuk & Dariusz Cichoń, 2023. "Determining of the Bankrupt Contingency as the Level Estimation Method of Western Ukraine Gas Distribution Enterprises’ Competence Capacity," Energies, MDPI, vol. 16(4), pages 1-13, February.
    6. Rocio de la Torre & Canan G. Corlu & Javier Faulin & Bhakti S. Onggo & Angel A. Juan, 2021. "Simulation, Optimization, and Machine Learning in Sustainable Transportation Systems: Models and Applications," Sustainability, MDPI, vol. 13(3), pages 1-21, February.
    7. Yael Deutsch & Boaz Golany, 2018. "A parcel locker network as a solution to the logistics last mile problem," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 251-261, January.
    8. Lin, Yunhui & Wang, Yuan & Lee, Loo Hay & Chew, Ek Peng, 2022. "Profit-maximizing parcel locker location problem under threshold Luce model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    9. I D Giosa & I L Tansini & I O Viera, 2002. "New assignment algorithms for the multi-depot vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 977-984, September.
    10. Mariusz Drabecki & Eugeniusz Toczyłowski, 2022. "Multi-Objective Approach for Managing Uncertain Delivery from Renewable Energy Sources within a Peer-to-Peer Energy Balancing Architecture," Energies, MDPI, vol. 15(3), pages 1-22, January.
    11. Bartosz Sawik & Julia Płonka, 2022. "Project and Prototype of Mobile Application for Monitoring the Global COVID-19 Epidemiological Situation," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    12. Paulina Golinska-Dawson & Kanchana Sethanan, 2023. "Sustainable Urban Freight for Energy-Efficient Smart Cities—Systematic Literature Review," Energies, MDPI, vol. 16(6), pages 1-28, March.
    13. Maria Richert & Marek Dudek, 2023. "Selected Problems of the Automotive Industry—Material and Economic Risk," JRFM, MDPI, vol. 16(8), pages 1-14, August.
    14. Ghaderi, Hadi & Zhang, Lele & Tsai, Pei-Wei & Woo, Jihoon, 2022. "Crowdsourced last-mile delivery with parcel lockers," International Journal of Production Economics, Elsevier, vol. 251(C).
    15. Maria Richert & Marek Dudek, 2023. "Risk Mapping: Ranking and Analysis of Selected, Key Risk in Supply Chains," JRFM, MDPI, vol. 16(2), pages 1-30, January.
    16. Snežana Tadić & Mladen Krstić & Svetlana Dabić-Miletić & Mladen Božić, 2023. "Smart Material Handling Solutions for City Logistics Systems," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    17. Raquel Soriano-Gonzalez & Elena Perez-Bernabeu & Yusef Ahsini & Patricia Carracedo & Andres Camacho & Angel A. Juan, 2023. "Analyzing Key Performance Indicators for Mobility Logistics in Smart and Sustainable Cities: A Case Study Centered on Barcelona," Logistics, MDPI, vol. 7(4), pages 1-20, October.
    18. Radosław Puka & Bartosz Łamasz & Iwona Skalna & Beata Basiura & Jerzy Duda, 2023. "Knowledge Discovery to Support WTI Crude Oil Price Risk Management," Energies, MDPI, vol. 16(8), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Di Gangi & Antonio Polimeni & Orlando Marco Belcore, 2023. "Freight Distribution in Small Islands: Integration between Naval Services and Parcel Lockers," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
    2. Kahr, Michael, 2022. "Determining locations and layouts for parcel lockers to support supply chain viability at the last mile," Omega, Elsevier, vol. 113(C).
    3. Wang, Yang & Bi, Mengyu & Lai, Jianhui & Wang, Chenxi & Chen, Yanyan & Holguín-Veras, José, 2024. "Recourse strategy for the routing problem of mobile parcel lockers with time windows under uncertain demands," European Journal of Operational Research, Elsevier, vol. 316(3), pages 942-957.
    4. Ashu Kedia & Diana Kusumastuti & Alan Nicholson, 2019. "Establishing Collection and Delivery Points to Encourage the Use of Active Transport: A Case Study in New Zealand Using a Consumer-Centric Approach," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    5. Sina Mohri, Seyed & Nassir, Neema & Thompson, Russell G. & Ghaderi, Hadi, 2024. "Last-Mile logistics with on-premises parcel Lockers: Who are the real Beneficiaries?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    6. T R P Ramos & R C Oliveira, 2011. "Delimitation of service areas in reverse logistics networks with multiple depots," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1198-1210, July.
    7. Zang, Xiaoning & Jiang, Li & Liang, Changyong & Fang, Xiang, 2023. "Coordinated home and locker deliveries: An exact approach for the urban delivery problem with conflicting time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    8. Li, Leiting & Huang, Min & Yue, Xiaohang & Wang, Xingwei, 2024. "The strategic analysis of collection delivery points network sharing in last-mile logistics market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    9. Becker, Tristan & Lier, Stefan & Werners, Brigitte, 2019. "Value of modular production concepts in future chemical industry production networks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 957-970.
    10. Venn, Tyron J. & Dorries, Jack W. & McGavin, Robert L., 2021. "A mathematical model to support investment in veneer and LVL manufacturing in subtropical eastern Australia," Forest Policy and Economics, Elsevier, vol. 128(C).
    11. Lin, Yun Hui & Wang, Yuan & He, Dongdong & Lee, Loo Hay, 2020. "Last-mile delivery: Optimal locker location under multinomial logit choice model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    12. Sauvey, Christophe & Melo, Teresa & Correia, Isabel, 2019. "Two-phase heuristics for a multi-period capacitated facility location problem with service-differentiated customers," Technical Reports on Logistics of the Saarland Business School 16, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    13. M. Fattahi & M. Mahootchi & S. M. Moattar Husseini, 2016. "Integrated strategic and tactical supply chain planning with price-sensitive demands," Annals of Operations Research, Springer, vol. 242(2), pages 423-456, July.
    14. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    15. Liu, Yubin & Ye, Qiming & Escribano-Macias, Jose & Feng, Yuxiang & Candela, Eduardo & Angeloudis, Panagiotis, 2023. "Route planning for last-mile deliveries using mobile parcel lockers: A hybrid q-learning network approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    16. Sabet, Ehsan & Yazdani, Baback & Kian, Ramez & Galanakis, Kostas, 2020. "A strategic and global manufacturing capacity management optimisation model: A Scenario-based multi-stage stochastic programming approach," Omega, Elsevier, vol. 93(C).
    17. Haider, Zulqarnain & Hu, Yujie & Charkhgard, Hadi & Himmelgreen, David & Kwon, Changhyun, 2022. "Creating grocery delivery hubs for food deserts at local convenience stores via spatial and temporal consolidation," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    18. Mateusz Ciski & Krzysztof Rząsa, 2023. "Multiscale Geographically Weighted Regression in the Investigation of Local COVID-19 Anomalies Based on Population Age Structure in Poland," IJERPH, MDPI, vol. 20(10), pages 1-23, May.
    19. Ut-Tha Veenarat, 2023. "Pioneering Eco-Cart: Carbon Reduction Solutions for Thai Online Shoppers," Management & Marketing, Sciendo, vol. 18(4), pages 515-536, December.
    20. Jesus Gonzalez-Feliu, 2013. "Vehicle Routing in Multi-Echelon Distribution Systems with Cross-Docking: A Systematic Lexical-Metanarrative Analysis," Post-Print halshs-00834573, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:8:y:2024:i:2:p:52-:d:1390521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.