IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3060-d514802.html
   My bibliography  Save this article

Development of a Rainfall and Runoff Simulator for Performing Hydrological and Geotechnical Tests

Author

Listed:
  • Thiago Augusto Mendes

    (Federal Institute of Education, Science and Technology of Goias, Aparecida de Goiânia 74968-755, Brazil
    School of Civil Engineering, Pontifical Catholic University of Goias, Goiânia 74605-010, Brazil)

  • Sávio Aparecido dos Santos Pereira

    (Federal Institute of Education, Science and Technology of Goias, Aparecida de Goiânia 74968-755, Brazil)

  • Juan Félix Rodriguez Rebolledo

    (Technology College, University of Brasília, Brasília 70910-900, Brazil)

  • Gilson de Farias Neves Gitirana

    (School of Civil and Environmental Engineering, Federal University of Goias, Goiânia 74605-220, Brazil)

  • Maria Tereza da Silva Melo

    (School of Civil and Environmental Engineering, Federal University of Catalão, Catalão 75704-020, Brazil)

  • Marta Pereira da Luz

    (School of Civil Engineering, Pontifical Catholic University of Goias, Goiânia 74605-010, Brazil
    Eletrobras, Furnas Centrais Elétricas S.A., Aparecida de Goiânia 74923-650, Brazil)

Abstract

Laboratory apparatuses for the analysis of infiltration and runoff enable studies under controlled environments and at reduced costs. Unfortunately, the design and construction of such systems are complex and face difficulties associated with the scale factor. This paper presents the design, construction, and evaluation of a portable rainfall and runoff simulator. The apparatus allows the evaluation of unsaturated soils with and without vegetation cover, under a wide range of simulation scenarios. The apparatus also enables the control of the intensity, size, and uniformity of simulated raindrops for variable surface slope, specimen thickness, and length conditions. The monitoring of the volumetric water content and matric suction and a rigorous computation of water balance are ensured. The obtained results indicate that the automated rainfall generator produces raindrops with Christiansen uniformity coefficients higher than 70%, and with an adequate distribution of raindrop sizes under a range of rainfall intensities between 86.0 and 220.0 mm h −1 . The ideal rainfall generator conditions were established for a relatively small area equal to or lower than 1.0 m 2 and considering rainfall events with return periods of 10 to 100 years.

Suggested Citation

  • Thiago Augusto Mendes & Sávio Aparecido dos Santos Pereira & Juan Félix Rodriguez Rebolledo & Gilson de Farias Neves Gitirana & Maria Tereza da Silva Melo & Marta Pereira da Luz, 2021. "Development of a Rainfall and Runoff Simulator for Performing Hydrological and Geotechnical Tests," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3060-:d:514802
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3060/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xia Zhang & Guo Yu & Zhan Li & Peng Li, 2014. "Experimental Study on Slope Runoff, Erosion and Sediment under Different Vegetation Types," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2415-2433, July.
    2. Hafzullah Aksoy & Abdullah Gedikli & N. Erdem Unal & Murat Yilmaz & Ebru Eris & Jaeyoung Yoon & Gokmen Tayfur, 2016. "Rainfall-Runoff Model Considering Microtopography Simulated in a Laboratory Erosion Flume," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5609-5624, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thiago Augusto Mendes & Roberto Dutra Alves & Gilson de Farias Neves Gitirana & Sávio Aparecido dos Santos Pereira & Juan Félix Rodriguez Rebolledo & Marta Pereira da Luz, 2021. "Evaluation of Rainfall Interception by Vegetation Using a Rainfall Simulator," Sustainability, MDPI, vol. 13(9), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinping Zhang & Yong Zhao & Weihua Xiao, 2015. "Multi-Resolution Cointegration Prediction for Runoff and Sediment Load," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3601-3613, August.
    2. Jianbo Liu & Guangyao Gao & Bing Zhang, 2023. "Effect of Shrub Components on Soil Water and Its Response to Precipitation at Different Time Scales in the Loess Plateau," IJERPH, MDPI, vol. 20(6), pages 1-15, March.
    3. Tomasz Zubala, 2022. "The Working Conditions and Optimisation of a Large Rainwater Harvesting and Treatment System in an Area at a Risk of Erosion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 135-152, January.
    4. Jun Luo & Xueyang Ma & Lei Wang & Bin Zhang & Xiao Yang & Tianxiang Yue, 2022. "The Influence of Short-Term Heavy Rainfall on Hydraulic Characteristics and Rill Formation in the Yuanmou Dry-Hot Valley," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    5. Xiaoxin Li & Ruichen Mao & Jinxi Song & Junqing Gao & Aying Shi & Wei Xiang & Haotian Sun, 2024. "Response of Runoff Change to Soil and Water Conservation Measures in the Jing River Catchment of China," Land, MDPI, vol. 13(4), pages 1-21, March.
    6. Julio Cesar Neves Santos & Eunice Maia Andrade & Pedro Henrique Augusto Medeiros & Maria João Simas Guerreiro & Helba Araújo Queiroz Palácio, 2017. "Effect of Rainfall Characteristics on Runoff and Water Erosion for Different Land Uses in a Tropical Semiarid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 173-185, January.
    7. Qinghe Zhao & Yifan Zhang & Shanshan Xu & Xiaoyu Ji & Shuoqian Wang & Shengyan Ding, 2019. "Relationships between Riparian Vegetation Pattern and the Hydraulic Characteristics of Upslope Runoff," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    8. Gokmen Tayfur & Bihrat Onoz & Antonino Cancelliere & Luis Garrote, 2016. "Editorial: Water Resources Management in a Changing World: Challenges and Opportunities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5553-5557, December.
    9. Fucui Wang & Hu Tao & Xi Shi & Shilong Bu & Ziming Bao & Dezhi Zhang, 2024. "Study on the Sand Reduction Effect of Slope Vegetation Combination in Loess Areas," Sustainability, MDPI, vol. 16(20), pages 1-19, October.
    10. Bagher Shirmohammadi & Arash Malekian & Saeid Varamesh & Abolfazl Jaafari & Javad Abdolahi & Saeed Shahbazikia & Mohammad Mohsenzadeh, 2024. "How can biomechanical measures incorporate climate change adaptation into disaster risk reduction and ecosystem sustainability?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8323-8336, July.
    11. Ferhat Gökbulak & Kamil Şengönül & Yusuf Serengil & Süleyman Özhan & İbrahim Yurtseven & Betül Uygur & Mehmet Said Özçelik, 2016. "Effect of Forest Thinning on Water Yield in a Sub-Humid Mediterranean Oak-Beech Mixed Forested Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5039-5049, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3060-:d:514802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.