IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p9048-d1502078.html
   My bibliography  Save this article

Simulation-Based Design for Recycling of Car Electronic Modules as a Function of Disassembly Strategies

Author

Listed:
  • Antoinette van Schaik

    (Material Recycling and Sustainability B.V. (MARAS B.V.), 2498 AS Den Haag, The Netherlands)

  • Markus A. Reuter

    (WASM: Minerals, Energy and Chemical Engineering, Curtin University, Perth 6102, Australia)

Abstract

Modules (or parts) of a car are a complex functional material combination used to deliver a specified task for a car. Recovering all materials, energy, etc., into high-grade materials at their end of life (EoL) is impossible. This is dictated by the second law of thermodynamics (2LT) and thence economics. Thus, recyclability cannot be conducted with simplistic mass-based approaches void of thermodynamic considerations. We apply, in this paper, a process simulation model to estimate the true recyclability of various SEAT (Volkswagen Group) car parts within the EU H2020 TREASURE project. This simulation model is developed with 190 reactors and over 310 feed components with over 1000 reaction species in the 880 streams of the flowsheet. The uniqueness of the work in this paper is to apply the full material declaration (FMD) and bill of materials (BOM) of all 310 materials in the parts as a feed to the process simulation model to show the parts’ true recyclability. We classified all parts into categories, i.e., copper-rich, steel-rich and plastic-rich, to maximally recover metals at the desired material quality, as well as energy. Recyclability is understood to create high-grade products that can be applied with the same functional quality in these parts. In addition, disassembly strategies and related possible redesign show how much recyclability can be improved. Process simulation permits the creation of alloys, phases, materials, etc., at a desired quality. The strength of the simulation permits any feed from any End-of-Life part to be analyzed, as long as the FMD and BOM are available. This is analogous to any mineral and metallurgical engineering process simulation for which the full mineralogy must be available to analyze and/or design flowsheets. This paper delivers a wealth of data for various parts as well as the ultimate recovery of materials, elements, and energy. The results show clearly that there is no one single recycling rate for elements, materials, and alloys. It is in fact a function of the complexity and material combinations within the parts. The fact that we use a thermochemical-based process simulator with full compositional detail for the considered parts means full energy balances as well as exergy dissipation can be evaluated. This means that we can also evaluate which parts, due complex mixtures of plastics, are best processed for energy recovery or are best for material and metal recovery, with thermochemistry, reactor technology and integrated flowsheets being the basis.

Suggested Citation

  • Antoinette van Schaik & Markus A. Reuter, 2024. "Simulation-Based Design for Recycling of Car Electronic Modules as a Function of Disassembly Strategies," Sustainability, MDPI, vol. 16(20), pages 1-62, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9048-:d:1502078
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/9048/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/9048/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abel Ortego & Marta Iglesias-Émbil & Alicia Valero & Miquel Gimeno-Fabra & Carlos Monné & Francisco Moreno, 2024. "Disassemblability Assessment of Car Parts: Lessons Learned from an Ecodesign Perspective," Sustainability, MDPI, vol. 16(6), pages 1-17, March.
    2. Morris, David R. & Szargut, Jan, 1986. "Standard chemical exergy of some elements and compounds on the planet earth," Energy, Elsevier, vol. 11(8), pages 733-755.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    2. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    3. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    4. Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).
    5. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    6. Peters, Jens F. & Petrakopoulou, Fontina & Dufour, Javier, 2015. "Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading," Energy, Elsevier, vol. 79(C), pages 325-336.
    7. Sogut, M. Ziya & Seçgin, Ömer & Ozkaynak, Süleyman, 2019. "Investigation of thermodynamics performance of alternative jet fuels based on decreasing threat of paraffinic and sulfur," Energy, Elsevier, vol. 181(C), pages 1114-1120.
    8. Ezzat, M.F. & Dincer, I., 2019. "Development and exergetic assessment of a new hybrid vehicle incorporating gas turbine as powering option," Energy, Elsevier, vol. 170(C), pages 112-119.
    9. Chen, Jianjun & Lam, Hon Loong & Qian, Yu & Yang, Siyu, 2021. "Combined energy consumption and CO2 capture management: Improved acid gas removal process integrated with CO2 liquefaction," Energy, Elsevier, vol. 215(PA).
    10. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    11. Dong, Weijie & He, Guoqing & Cui, Quansheng & Sun, Wenwen & Hu, Zhenlong & Ahli raad, Erfan, 2022. "Self-scheduling of a novel hybrid GTSOFC unit in day-ahead energy and spinning reserve markets within ancillary services using a novel energy storage," Energy, Elsevier, vol. 239(PE).
    12. Nguyen, Tuong-Van & Fülöp, Tamás Gábor & Breuhaus, Peter & Elmegaard, Brian, 2014. "Life performance of oil and gas platforms: Site integration and thermodynamic evaluation," Energy, Elsevier, vol. 73(C), pages 282-301.
    13. Xiong, Shanshan & He, Jiang & Yang, Zhongqing & Guo, Mingnv & Yan, Yunfei & Ran, Jingyu, 2020. "Thermodynamic analysis of CaO enhanced steam gasification process of food waste with high moisture and low moisture," Energy, Elsevier, vol. 194(C).
    14. Wang, Zhiming & Wang, Xueye & Chen, Zhichao & Liao, Zhirong & Xu, Chao & Du, Xiaoze, 2021. "Energy and exergy analysis of a proton exchange membrane water electrolysis system without additional internal cooling," Renewable Energy, Elsevier, vol. 180(C), pages 1333-1343.
    15. Li, Fang-zhou & Kang, Jing-xian & Song, Yun-cai & Feng, Jie & Li, Wen-ying, 2020. "Thermodynamic feasibility for molybdenum-based gaseous oxides assisted looping coal gasification and its derived power plant," Energy, Elsevier, vol. 194(C).
    16. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
    17. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    18. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    19. Giap, Van-Tien & Lee, Young Duk & Kim, Young Sang & Ahn, Kook Young, 2020. "A novel electrical energy storage system based on a reversible solid oxide fuel cell coupled with metal hydrides and waste steam," Applied Energy, Elsevier, vol. 262(C).
    20. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9048-:d:1502078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.