IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p8838-d1497177.html
   My bibliography  Save this article

Cleaning Up Metal Contamination after Decades of Energy Production and Manufacturing: Reviewing the Value in Use of Biochars for a Sustainable Future

Author

Listed:
  • Priyanka

    (School of Engineering, Chemical Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK
    Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
    These authors contributed equally to this work.)

  • Isobel E. Wood

    (School of Engineering, Chemical Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK
    Energy and Environment Institute, University of Hull, Cottingham Road, Hull HU6 7RX, UK
    These authors contributed equally to this work.)

  • Amthal Al-Gailani

    (School of Engineering, Chemical Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK)

  • Ben W. Kolosz

    (Energy and Environment Institute, University of Hull, Cottingham Road, Hull HU6 7RX, UK)

  • Kin Wai Cheah

    (School of Computing, Engineering & Digital Technologies, Teesside University, Borough Road, Middlesbrough TS1 3BA, UK)

  • Devika Vashisht

    (Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India)

  • Surinder K. Mehta

    (Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
    Department of Chemistry, University of Ladakh, Kargil 194103, India)

  • Martin J. Taylor

    (School of Engineering, Chemical Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK)

Abstract

The lasting impact of ancestral energy production operations and global manufacturing has not only generated substantial CO 2 emissions, but it has also led to the release of metal-based pollutants into Earth’s water bodies. As we continue to engineer, mine (coal and metals), and now bore into geothermal wells/fracking sites for alternative energy sources, we continue to contaminate drinking water supplies with heavy metals through infiltration and diffusion, limiting progress towards achieving Sustainable Development Goals 3 (Sustainable Development Goal 3: Good health and well-being), 6 (Sustainable Development Goal 6: Clean water and sanitation), 14 (Sustainable Development Goal 14: Life below water), and 15 (Sustainable Development Goal 15: Life on land). This review shows how the research community has designed and developed mesoporous biochars with customizable pore systems, as well as functionalized biochars, to extract various heavy metals from water sources. This article investigates how biochar materials (non-activated, activated, functionalized, or hybrid structures) can be adapted to suit their purpose, highlighting their recyclability/regeneration and performance when remediating metal-based pollution in place of conventional activated carbons. By utilizing the wider circular economy, “waste-derived” carbonaceous materials will play a pivotal role in water purification for both the developed/developing world, where mining and heavy manufacturing generate the most substantial contribution to water pollution. This review encompasses a wide range of global activities that generate increased heavy metal contamination to water supplies, as well as elucidates emerging technologies that can augment environmental remediation activities, improving the quality of life and standard of living for all.

Suggested Citation

  • Priyanka & Isobel E. Wood & Amthal Al-Gailani & Ben W. Kolosz & Kin Wai Cheah & Devika Vashisht & Surinder K. Mehta & Martin J. Taylor, 2024. "Cleaning Up Metal Contamination after Decades of Energy Production and Manufacturing: Reviewing the Value in Use of Biochars for a Sustainable Future," Sustainability, MDPI, vol. 16(20), pages 1-44, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8838-:d:1497177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/8838/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/8838/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Daixi Zhou & Guangyu Xie & Xinjiang Hu & Xiaoxi Cai & Yunlin Zhao & Xi Hu & Qi Jin & Xiaohua Fu & Xiaofei Tan & Chong Liang & Kaiqi Lai & Hui Wang & Chunfang Tang, 2020. "Coupling of kenaf Biochar and Magnetic BiFeO 3 onto Cross-Linked Chitosan for Enhancing Separation Performance and Cr(VI) Ions Removal Efficiency," IJERPH, MDPI, vol. 17(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    2. Shuai Zhang & Haibo Hu & Xiangdong Jia & Xia Wang & Jianyu Chen & Can Cheng & Xichuan Jia & Zhaoming Wu & Li Zhu, 2022. "How Biochar Derived from Pond Cypress ( Taxodium Ascendens ) Evolved with Pyrolysis Temperature and Time and Their End Efficacy Evaluation," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    3. Paul Palmay & Diego Barzallo & Cesar Puente & Ricardo Robalino & Dayana Quinaluisa & Joan Carles Bruno, 2024. "Influence of γ-Fe 2 O 3 Nanoparticles Added to Gasoline–Bio-Oil Blends Derived from Plastic Waste on Combustion and Emissions Generated in a Gasoline Engine," Energies, MDPI, vol. 17(12), pages 1-13, June.
    4. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Ricardo de C. Bittencourt & Tiago Guimarães & Marcelo M. da Costa & Larissa S. Silva & Verônica O. de P. Barbosa & Stéphani Caroline de L. Arêdes & Krisnna S. Alves & Ana Márcia M. L. Carvalho, 2024. "Production of High-Value Green Chemicals via Catalytic Fast Pyrolysis of Eucalyptus urograndis Forest Residues," Sustainability, MDPI, vol. 16(19), pages 1-14, September.
    6. Matteo Prussi, 2024. "Applying the International Maritime Organisation Life Cycle Assessment Guidelines to Pyrolysis Oil-Derived Blends: A Sustainable Option for Marine Fuels," Energies, MDPI, vol. 17(21), pages 1-17, October.
    7. Carvalho, Pollyana R. & Medeiros, Samuel L.S. & Paixão, Raul L. & Figueredo, Igor M. & Mattos, Adriano L.A. & Rios, M. Alexsandra S., 2023. "Thermogravimetric pyrolysis of residual biomasses obtained post-extraction of carnauba wax: Determination of kinetic parameters using Friedman's isoconversional method," Renewable Energy, Elsevier, vol. 207(C), pages 703-713.
    8. Mousavi-Avval, Seyed Hashem & Sahoo, Kamalakanta & Nepal, Prakash & Runge, Troy & Bergman, Richard, 2023. "Environmental impacts and techno-economic assessments of biobased products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    9. José Pereira & Reinaldo Souza & Jeferson Oliveira & Ana Moita, 2024. "Hydrogen Production, Transporting and Storage Processes—A Brief Review," Clean Technol., MDPI, vol. 6(3), pages 1-54, September.
    10. Hamed, A.S.A. & Yusof, N.I.F.M. & Yahya, M.S. & Cardozo, E. & Munajat, N.F., 2023. "Concentrated solar pyrolysis for oil palm biomass: An exploratory review within the Malaysian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Zhou, Chunbao & Chen, Yuanxiang & Xing, Xuyang & Chen, Lei & Liu, Chenglong & Chao, Li & Yao, Bang & Zhang, Yingwen & Dai, Jianjun & Liu, Yang & Wang, Jun & Dong, Jie & Li, Yunxiang & Fan, Dekai & Wan, 2024. "Pilot-scale pyrolysis and activation of typical biomass chips in an interconnected dual fluidized bed: Comparison and analysis of products," Renewable Energy, Elsevier, vol. 225(C).
    12. Dina Aboelela & Habibatallah Saleh & Attia M. Attia & Yasser Elhenawy & Thokozani Majozi & Mohamed Bassyouni, 2023. "Recent Advances in Biomass Pyrolysis Processes for Bioenergy Production: Optimization of Operating Conditions," Sustainability, MDPI, vol. 15(14), pages 1-30, July.
    13. Svetlana Zueva & Francesco Ferella & Valentina Corradini & Francesco Vegliò, 2024. "Review of Organic Waste-to-Energy (OWtE) Technologies as a Part of a Sustainable Circular Economy," Energies, MDPI, vol. 17(15), pages 1-26, August.
    14. Ahmed Mosa & Mostafa M. Mansour & Enas Soliman & Ayman El-Ghamry & Mohamed El Alfy & Ahmed M. El Kenawy, 2023. "Biochar as a Soil Amendment for Restraining Greenhouse Gases Emission and Improving Soil Carbon Sink: Current Situation and Ways Forward," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    15. Xia, Longlong & Chen, Wenhao & Lu, Bufan & Wang, Shanshan & Xiao, Lishan & Liu, Beibei & Yang, Hongqiang & Huang, Chu-Long & Wang, Hongtao & Yang, Yang & Lin, Litao & Zhu, Xiangdong & Chen, Wei-Qiang , 2023. "Climate mitigation potential of sustainable biochar production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    16. Bartłomiej Igliński & Wojciech Kujawski & Urszula Kiełkowska, 2023. "Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review," Energies, MDPI, vol. 16(4), pages 1-26, February.
    17. Rahman, Md Hafizur & Bhoi, Prakashbhai R. & Menezes, Pradeep L., 2023. "Pyrolysis of waste plastics into fuels and chemicals: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Juan-Carlos Cobos-Torres & Juan Izquierdo & Manuel Alvarez-Vera, 2024. "Energy Efficiency of Lignocellulosic Biomass Pyrolysis in Two Types of Reactors: Electrical and with Primary Forest Biomass Fuel," Energies, MDPI, vol. 17(12), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8838-:d:1497177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.