IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2843-d1411776.html
   My bibliography  Save this article

Influence of γ-Fe 2 O 3 Nanoparticles Added to Gasoline–Bio-Oil Blends Derived from Plastic Waste on Combustion and Emissions Generated in a Gasoline Engine

Author

Listed:
  • Paul Palmay

    (Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo ESPOCH, Panamericana Sur Km 1 1/2, Riobamba 060155, Ecuador)

  • Diego Barzallo

    (Facultad de Ciencias e Ingeniería, Universidad Estatal de Milagro, Milagro 091050, Ecuador)

  • Cesar Puente

    (Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo ESPOCH, Panamericana Sur Km 1 1/2, Riobamba 060155, Ecuador)

  • Ricardo Robalino

    (Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo ESPOCH, Panamericana Sur Km 1 1/2, Riobamba 060155, Ecuador)

  • Dayana Quinaluisa

    (Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo ESPOCH, Panamericana Sur Km 1 1/2, Riobamba 060155, Ecuador)

  • Joan Carles Bruno

    (Department of Mechanical Engineering, Universitat Rovira i Virgili, Avda. Paisos Catalans, 26, 43007 Tarragona, Spain)

Abstract

The environmental pressure to reduce the use of fossil fuels such as gasoline generates the need to search for new fuels that have similar characteristics to conventional fuels. In this sense, the objective of the present study is the use of commercial gasoline in mixtures with pyrolytic oil from plastic waste and the addition of γ-Fe 2 O 3 nanoparticles (NPs) in a spark ignition engine to analyze both the power generated in a real engine and the emissions resulting from the combustion process. The pyrolytic oil used was obtained from thermal pyrolysis at low temperatures (450 °C) of a mixture composed of 75% polystyrene (PS) and 25% polypropylene (PP), which was mixed with 87 octane commercial gasoline in 2% and 5% by volume and 40 mg of γ-Fe 2 O 3 NPs. A standard sample was proposed, which was only gasoline, one mixture of gasoline with bio-oil, and a gasoline, bio-oil, and NPs mixture. The bio-oil produced from the pyrolysis of PS and PP enhances the octane number of the fuel and improves the engine’s power performance at low revolutions. In contrast, the addition of iron NPs significantly improves gaseous emissions with a reduction in emissions of CO (carbon monoxide), NOx (nitrogen oxide), and HCs (hydrocarbons) due to its advantages, which include its catalytic effect, presence of active oxygen, and its large surface area.

Suggested Citation

  • Paul Palmay & Diego Barzallo & Cesar Puente & Ricardo Robalino & Dayana Quinaluisa & Joan Carles Bruno, 2024. "Influence of γ-Fe 2 O 3 Nanoparticles Added to Gasoline–Bio-Oil Blends Derived from Plastic Waste on Combustion and Emissions Generated in a Gasoline Engine," Energies, MDPI, vol. 17(12), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2843-:d:1411776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Fatma Zohra Aklouche & Loubna Hadhoum & Khaled Loubar & Mohand Tazerout, 2023. "A Comprehensive Study on Effect of Biofuel Blending Obtained from Hydrothermal Liquefaction of Olive Mill Waste Water in Internal Combustion Engine," Energies, MDPI, vol. 16(6), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    2. Shuai Zhang & Haibo Hu & Xiangdong Jia & Xia Wang & Jianyu Chen & Can Cheng & Xichuan Jia & Zhaoming Wu & Li Zhu, 2022. "How Biochar Derived from Pond Cypress ( Taxodium Ascendens ) Evolved with Pyrolysis Temperature and Time and Their End Efficacy Evaluation," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    3. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Jianbo Zhou & Rui Zhang & Wenxiong Xi & Weidong Zhao, 2023. "Computational Analysis on Combustion Control of Diesel Engines Fueled with Ester Alcohol Diesel," Energies, MDPI, vol. 16(16), pages 1-15, August.
    5. Carvalho, Pollyana R. & Medeiros, Samuel L.S. & Paixão, Raul L. & Figueredo, Igor M. & Mattos, Adriano L.A. & Rios, M. Alexsandra S., 2023. "Thermogravimetric pyrolysis of residual biomasses obtained post-extraction of carnauba wax: Determination of kinetic parameters using Friedman's isoconversional method," Renewable Energy, Elsevier, vol. 207(C), pages 703-713.
    6. Mousavi-Avval, Seyed Hashem & Sahoo, Kamalakanta & Nepal, Prakash & Runge, Troy & Bergman, Richard, 2023. "Environmental impacts and techno-economic assessments of biobased products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    7. Hamed, A.S.A. & Yusof, N.I.F.M. & Yahya, M.S. & Cardozo, E. & Munajat, N.F., 2023. "Concentrated solar pyrolysis for oil palm biomass: An exploratory review within the Malaysian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Zhou, Chunbao & Chen, Yuanxiang & Xing, Xuyang & Chen, Lei & Liu, Chenglong & Chao, Li & Yao, Bang & Zhang, Yingwen & Dai, Jianjun & Liu, Yang & Wang, Jun & Dong, Jie & Li, Yunxiang & Fan, Dekai & Wan, 2024. "Pilot-scale pyrolysis and activation of typical biomass chips in an interconnected dual fluidized bed: Comparison and analysis of products," Renewable Energy, Elsevier, vol. 225(C).
    9. Dina Aboelela & Habibatallah Saleh & Attia M. Attia & Yasser Elhenawy & Thokozani Majozi & Mohamed Bassyouni, 2023. "Recent Advances in Biomass Pyrolysis Processes for Bioenergy Production: Optimization of Operating Conditions," Sustainability, MDPI, vol. 15(14), pages 1-30, July.
    10. Ahmed Mosa & Mostafa M. Mansour & Enas Soliman & Ayman El-Ghamry & Mohamed El Alfy & Ahmed M. El Kenawy, 2023. "Biochar as a Soil Amendment for Restraining Greenhouse Gases Emission and Improving Soil Carbon Sink: Current Situation and Ways Forward," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    11. Xia, Longlong & Chen, Wenhao & Lu, Bufan & Wang, Shanshan & Xiao, Lishan & Liu, Beibei & Yang, Hongqiang & Huang, Chu-Long & Wang, Hongtao & Yang, Yang & Lin, Litao & Zhu, Xiangdong & Chen, Wei-Qiang , 2023. "Climate mitigation potential of sustainable biochar production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    12. Bartłomiej Igliński & Wojciech Kujawski & Urszula Kiełkowska, 2023. "Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review," Energies, MDPI, vol. 16(4), pages 1-26, February.
    13. Rahman, Md Hafizur & Bhoi, Prakashbhai R. & Menezes, Pradeep L., 2023. "Pyrolysis of waste plastics into fuels and chemicals: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Juan-Carlos Cobos-Torres & Juan Izquierdo & Manuel Alvarez-Vera, 2024. "Energy Efficiency of Lignocellulosic Biomass Pyrolysis in Two Types of Reactors: Electrical and with Primary Forest Biomass Fuel," Energies, MDPI, vol. 17(12), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2843-:d:1411776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.