IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i19p8565-d1491139.html
   My bibliography  Save this article

In Situ Conductive Heating for Thermal Desorption of Volatile Organic-Contaminated Soil Based on Solar Energy

Author

Listed:
  • Mei Wang

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi’an 710054, China)

  • Deyang Kong

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Lang Liu

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Guoming Wen

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Fan Zhang

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China)

Abstract

A novel conductive heating method using solar energy for soil remediation was introduced in this work. Contaminated industrial heritage sites will affect the sustainable development of the local ecological environment and the surrounding air environment, and frequent exposure will have a negative impact on human health. Soil thermal desorption is an effective means to repair contaminated soil, but thermal desorption is accompanied by a large amount of energy consumption and secondary pollution. Therefore, a trough solar heat collection desorption system (TSHCDS) is proposed, which is applied to soil thermal desorption technology. The effects of different water inlet temperature, water inlet velocity and soil porosity on the evolution of soil temperature field were discussed. The temperature field of contaminated soil can be numerically simulated, and a small experimental platform is built to verify the accuracy of the numerical model for simulation research. It is concluded that the heating effect is the best when the water entry temperature is the highest, at 70 °C, and the temperature of test point 4 is increased by 50.71% and 1.42%, respectively. When the inlet water flow rate is increased from 0.1 m/s to 0.2 m/s, the heating effect is significantly improved; when the inlet water flow rate is increased from 0.5 m/s to 1.5 m/s, the heating effect is not significantly improved. Therefore, when the flow rate is greater than a certain value, the heating effect is not significantly improved. The simulation analysis of soil with different porosity shows that larger porosity will affect the thermal diffusivity, which will make the heat transfer effect worse and reduce the heating effect. The effects of soil temperature distribution on the removal of petroleum hydrocarbon C 6 –C 9 and trichloroethylene (TCE) were studied. The results showed that in the thermal desorption process of petroleum hydrocarbon C 6 –C 9 -contaminated soil, the removal rate of pollutants increased significantly when the average soil temperature reached 80 °C. In the thermal desorption of trichloroethylene-contaminated soil, when the thermal desorption begins, the soil temperature rises rapidly and reaches the target temperature, and a large number of pollutants are removed. At the end of thermal desorption, the removal of both types of pollutants reached the target repair value. This study provides a new feasible method for soil thermal desorption.

Suggested Citation

  • Mei Wang & Deyang Kong & Lang Liu & Guoming Wen & Fan Zhang, 2024. "In Situ Conductive Heating for Thermal Desorption of Volatile Organic-Contaminated Soil Based on Solar Energy," Sustainability, MDPI, vol. 16(19), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8565-:d:1491139
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/19/8565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/19/8565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Edokpolo & Qiming Jimmy Yu & Des Connell, 2015. "Health Risk Assessment for Exposure to Benzene in Petroleum Refinery Environments," IJERPH, MDPI, vol. 12(1), pages 1-16, January.
    2. Chen, Xinge & Liang, Hao & Wu, Gang & Feng, Chaoqing & Tao, Tao & Ji, Yaning & Ma, Qianlei & Tong, Yuxin, 2023. "Coupled heat and humidity control system of narrow-trough solar collector and solid desiccant in Chinese solar greenhouse: Analysis of optical / thermal characteristics and experimental study," Energy, Elsevier, vol. 273(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunisa Chaiklieng & Pornnapa Suggaravetsiri & Herman Autrup, 2019. "Risk Assessment on Benzene Exposure among Gasoline Station Workers," IJERPH, MDPI, vol. 16(14), pages 1-9, July.
    2. Tapani Tuomi & Henna Veijalainen & Tiina Santonen, 2018. "Managing Exposure to Benzene and Total Petroleum Hydrocarbons at Two Oil Refineries 1977–2014," IJERPH, MDPI, vol. 15(2), pages 1-15, January.
    3. Masilu Daniel Masekameni & Raeesa Moolla & Mary Gulumian & Derk Brouwer, 2018. "Risk Assessment of Benzene, Toluene, Ethyl Benzene, and Xylene Concentrations from the Combustion of Coal in a Controlled Laboratory Environment," IJERPH, MDPI, vol. 16(1), pages 1-18, December.
    4. Xia, Tianyang & He, Ming & Li, Yiming & Sun, Dapeng & Sun, Zhouping & Liu, Xingan & Li, Tianlai, 2024. "New design concept and thermal performance of a composite wall applied in solar greenhouse," Energy, Elsevier, vol. 300(C).
    5. Nerlis Pajaro-Castro & Karina Caballero-Gallardo & Jesus Olivero-Verbel, 2017. "Toxicity of Naphthalene and Benzene on Tribollium castaneum Herbst," IJERPH, MDPI, vol. 14(6), pages 1-10, June.
    6. Xue Bai & Kai Song & Jian Liu & Adam Khalifa Mohamed & Chenya Mou & Dan Liu, 2019. "Health Risk Assessment of Groundwater Contaminated by Oil Pollutants Based on Numerical Modeling," IJERPH, MDPI, vol. 16(18), pages 1-20, September.
    7. Xinge, Chen & Jianbin, Zang & Gang, Wu & Hao, Liang & Yunfan, Yang & Dawei, Shi & Chaoqing, Feng, 2024. "Coupled system for underground heating exchange and solar heat-humidity regulation in greenhouse: Experimental study and simulation analysis," Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8565-:d:1491139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.