IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7799-d1473247.html
   My bibliography  Save this article

Are Magnesium Alloys Applied in Cars Sustainable and Environmentally Friendly? A Critical Review

Author

Listed:
  • Lucas Reijnders

    (IBED, Faculty of Science, University of Amsterdam, Science Park 904, 1090 GE Amsterdam, The Netherlands)

Abstract

In the scientific literature, the terms sustainable, green, ecofriendly and environment(ally) friendly are used regarding magnesium alloys applied in cars. When sustainability is defined as remaining within safe planetary boundaries for mankind or as conserving natural capital for transfer to future generations, current alloys based on primary magnesium applied in cars are not sustainable. Current alloys based on primary magnesium are not green, ecofriendly or environmentally friendly when these terms mean that there is no burden to the environment or a minimal burden to the environment. Available environmental data do not support claims that current alloys based on magnesium originating from the Pidgeon process, which replace primary mild conventional steel in automotive applications, can be characterized as green, ecofriendly or environmentally friendly. There are options for substantially reducing contributions to the life cycle environmental burden of magnesium alloys. Minimizing the life cycle environmental burden of magnesium alloys may enable them to be characterized as environmentally friendly, ecofriendly or green in the sense of a minimal burden to the environment.

Suggested Citation

  • Lucas Reijnders, 2024. "Are Magnesium Alloys Applied in Cars Sustainable and Environmentally Friendly? A Critical Review," Sustainability, MDPI, vol. 16(17), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7799-:d:1473247
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7799/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xingcheng Liu & Henggen Shen & Xueli Nie, 2019. "Study on the Filtration Performance of the Baghouse Filters for Ultra-Low Emission as a Function of Filter Pore Size and Fiber Diameter," IJERPH, MDPI, vol. 16(2), pages 1-19, January.
    2. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Kwon, Gui-Rok & Woo, Seung H. & Lim, Seong-Rin, 2015. "Industrial ecology-based strategies to reduce the embodied CO2 of magnesium metal," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 206-212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ray Galvin, 2024. "How Not to Reduce Carbon Dioxide Emissions: An Unbalanced Focus on Energy Efficiency in Germany’s Building Rehabilitation Policies," Energies, MDPI, vol. 17(17), pages 1-20, September.
    2. Maliyamu Abudureheman & Qingzhe Jiang & Xiucheng Dong & Cong Dong, 2022. "CO 2 Emissions in China: Does the Energy Rebound Matter?," Energies, MDPI, vol. 15(12), pages 1-25, June.
    3. Berner, Anne & Bruns, Stephan & Moneta, Alessio & Stern, David I., 2022. "Do energy efficiency improvements reduce energy use? Empirical evidence on the economy-wide rebound effect in Europe and the United States," Energy Economics, Elsevier, vol. 110(C).
    4. Saeed Solaymani & Saeed Sharafi, 2021. "A Comparative Study between Government Support and Energy Efficiency in Malaysian Transport," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    5. Guan, Zepeng & Hossain, Mohammad Razib & Sheikh, Muhammad Ramzan & Khan, Zeeshan & Gu, Xiao, 2023. "Unveiling the interconnectedness between energy-related GHGs and pro-environmental energy technology: Lessons from G-7 economies with MMQR approach," Energy, Elsevier, vol. 281(C).
    6. Ahmann, Lara & Banning, Maximilian & Lutz, Christian, 2022. "Modeling rebound effects and counteracting policies for German industries," Ecological Economics, Elsevier, vol. 197(C).
    7. Liddle, Brantley & Parker, Steven & Hasanov, Fakhri, 2023. "Why has the OECD long-run GDP elasticity of economy-wide electricity demand declined? Because the electrification of energy services has saturated," Energy Economics, Elsevier, vol. 125(C).
    8. John Barrett & Steve Pye & Sam Betts-Davies & Oliver Broad & James Price & Nick Eyre & Jillian Anable & Christian Brand & George Bennett & Rachel Carr-Whitworth & Alice Garvey & Jannik Giesekam & Greg, 2022. "Energy demand reduction options for meeting national zero-emission targets in the United Kingdom," Nature Energy, Nature, vol. 7(8), pages 726-735, August.
    9. Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
    10. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Brigita Žuromskaitė-Nagaj & Wieslaw Wes Grebski, 2024. "The Influence of the Global Energy Crisis on Energy Efficiency: A Comprehensive Analysis," Energies, MDPI, vol. 17(4), pages 1-51, February.
    11. Lee, Chien-Chiang & Yahya, Farzan, 2024. "Mitigating energy instability: The influence of trilemma choices, financial development, and technology advancements," Energy Economics, Elsevier, vol. 133(C).
    12. Jafari, Hamed & Safarzadeh, Soroush & Azad-Farsani, Ehsan, 2022. "Effects of governmental policies on energy-efficiency improvement of hydrogen fuel cell cars: A game-theoretic approach," Energy, Elsevier, vol. 254(PC).
    13. Lamorlette, A., 2023. "A coupled model of global energy production and ERoEI applied to photovoltaic and wind, an estimation of net production," Energy, Elsevier, vol. 278(PB).
    14. Charles A. S. Hall, 2022. "The 50th Anniversary of The Limits to Growth : Does It Have Relevance for Today’s Energy Issues?," Energies, MDPI, vol. 15(14), pages 1-13, July.
    15. Zbigniew Bohdanowicz & Beata Łopaciuk-Gonczaryk & Jarosław Kowalski & Cezary Biele, 2021. "Households’ Electrical Energy Conservation and Management: An Ecological Break-Through, or the Same Old Consumption-Growth Path?," Energies, MDPI, vol. 14(20), pages 1-21, October.
    16. Guzzo, D. & Walrave, B. & Videira, N. & Oliveira, I.C. & Pigosso, D.C.A., 2024. "Towards a systemic view on rebound effects: Modelling the feedback loops of rebound mechanisms," Ecological Economics, Elsevier, vol. 217(C).
    17. Ping Han & Ziyu Zhou, 2023. "The Harmonious Relationship between Energy Utilization Efficiency and Industrial Structure Development under Carbon Emission Constraints: Measurement, Quantification, and Identification," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    18. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    19. Muhammad Mushafiq & Muzammil Muhammad Khan Arisar & Hanan Tariq & Stanislaw Czapp, 2023. "Energy Efficiency and Economic Policy: Comprehensive Theoretical, Empirical, and Policy Review," Energies, MDPI, vol. 16(5), pages 1-22, March.
    20. Ignacio Mauleón, 2021. "Aggregated World Energy Demand Projections: Statistical Assessment," Energies, MDPI, vol. 14(15), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7799-:d:1473247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.