IDEAS home Printed from https://ideas.repec.org/p/ssa/lemwps/2021-20.html
   My bibliography  Save this paper

Do Energy Efficiency Improvements Reduce Energy Use? Empirical Evidence on the Economy-Wide Rebound Effect in Europe and the United States

Author

Listed:
  • Anne Berner
  • Stephan Bruns
  • Alessio Moneta
  • David I. Stern

Abstract

Improving energy efficiency is often considered to be one of the keys to reducing greenhouse gas emissions. However, efficiency gains also reduce the cost of energy services and may even reduce the price of energy, resulting in energy use rebounding and potential energy use savings being eaten up. There is only limited empirical research quantifying the economy-wide rebound effect that takes the dynamic economic responses to energy efficiency improvements into account. We use a Structural Factor-Augmented Vector Autoregressive model (S-FAVAR) that allows us to track how energy use changes in response to an energy efficiency improvement while accounting for a vast range of potential confounders. Our findings point to economy-wide rebound effects of 78% to 101% after two years in France, Germany, Italy, the U.K., and the U.S. These findings imply that energy efficiency innovations alone may be of limited help in reducing future energy use and emphasize the importance of tackling carbon emissions directly.

Suggested Citation

  • Anne Berner & Stephan Bruns & Alessio Moneta & David I. Stern, 2021. "Do Energy Efficiency Improvements Reduce Energy Use? Empirical Evidence on the Economy-Wide Rebound Effect in Europe and the United States," LEM Papers Series 2021/20, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  • Handle: RePEc:ssa:lemwps:2021/20
    as

    Download full text from publisher

    File URL: http://www.lem.sssup.it/WPLem/files/2021-20.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gouriéroux, Christian & Monfort, Alain & Renne, Jean-Paul, 2017. "Statistical inference for independent component analysis: Application to structural VAR models," Journal of Econometrics, Elsevier, vol. 196(1), pages 111-126.
    2. Sebastian Rausch & Hagen Schwerin, 2018. "Does Higher Energy Efficiency Lower Economy-Wide Energy Use?," CER-ETH Economics working paper series 18/299, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    3. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2011. "Non‐Fundamentalness in Structural Econometric Models: A Review," International Statistical Review, International Statistical Institute, vol. 79(1), pages 16-47, April.
    4. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    5. Stern, David I., 2020. "How large is the economy-wide rebound effect?," Energy Policy, Elsevier, vol. 147(C).
    6. Shao, Shuai & Huang, Tao & Yang, Lili, 2014. "Using latent variable approach to estimate China׳s economy-wide energy rebound effect over 1954–2010," Energy Policy, Elsevier, vol. 72(C), pages 235-248.
    7. Fullerton, Don & Ta, Chi L., 2020. "Costs of energy efficiency mandates can reverse the sign of rebound," Journal of Public Economics, Elsevier, vol. 188(C).
    8. Bruns, Stephan B. & Moneta, Alessio & Stern, David I., 2021. "Estimating the economy-wide rebound effect using empirically identified structural vector autoregressions," Energy Economics, Elsevier, vol. 97(C).
    9. Turner, Karen, 2009. "Negative rebound and disinvestment effects in response to an improvement in energy efficiency in the UK economy," Energy Economics, Elsevier, vol. 31(5), pages 648-666, September.
    10. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    11. Morakinyo O. Adetutu, Anthony J. Glass, and Thomas G. Weyman-Jones, 2016. "Economy-wide Estimates of Rebound Effects: Evidence from Panel Data," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    12. Ben S. Bernanke & Mark Gertler & Mark Watson, 1997. "Systematic Monetary Policy and the Effects of Oil Price Shocks," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(1), pages 91-157.
    13. Yan, Zheming & Ouyang, Xiaoling & Du, Kerui, 2019. "Economy-wide estimates of energy rebound effect: Evidence from China's provinces," Energy Economics, Elsevier, vol. 83(C), pages 389-401.
    14. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017. "Identification and estimation of non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
    15. Emanuel Mönch & Harald Uhlig, 2005. "Towards a Monthly Business Cycle Chronology for the Euro Area," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(1), pages 43-69.
    16. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    17. Helmut Herwartz, 2018. "Hodges–Lehmann Detection of Structural Shocks – An Analysis of Macroeconomic Dynamics in the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(4), pages 736-754, August.
    18. Moshiri, Saeed & Aliyev, Kamil, 2017. "Rebound effect of efficiency improvement in passenger cars on gasoline consumption in Canada," Ecological Economics, Elsevier, vol. 131(C), pages 330-341.
    19. Saunders, Harry D., 2008. "Fuel conserving (and using) production functions," Energy Economics, Elsevier, vol. 30(5), pages 2184-2235, September.
    20. Koesler, Simon, 2013. "Catching the rebound: Economy-wide implications of an efficiency shock in the provision of transport services by households," ZEW Discussion Papers 13-082, ZEW - Leibniz Centre for European Economic Research.
    21. Massimiliano Marcellino & Carlo A. Favero & Francesca Neglia, 2005. "Principal components at work: the empirical analysis of monetary policy with large data sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 603-620.
    22. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
    23. Maxand, Simone, 2020. "Identification of independent structural shocks in the presence of multiple Gaussian components," Econometrics and Statistics, Elsevier, vol. 16(C), pages 55-68.
    24. Lin, Boqiang & Liu, Xia, 2012. "Dilemma between economic development and energy conservation: Energy rebound effect in China," Energy, Elsevier, vol. 45(1), pages 867-873.
    25. Hwang, Hae-shin, 2009. "Two-step estimation of a factor model in the presence of observable factors," Economics Letters, Elsevier, vol. 105(3), pages 247-249, December.
    26. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    27. Lin, Boqiang & Du, Kerui, 2015. "Measuring energy rebound effect in the Chinese economy: An economic accounting approach," Energy Economics, Elsevier, vol. 50(C), pages 96-104.
    28. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    29. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, October.
    30. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    31. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    32. Moneta, Alessio & Pallante, Gianluca, 2022. "Identification of Structural VAR Models via Independent Component Analysis: A Performance Evaluation Study," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    33. Zhang, Jiangshan & Lin Lawell, C.-Y. Cynthia, 2017. "The macroeconomic rebound effect in China," Energy Economics, Elsevier, vol. 67(C), pages 202-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Do Energy Efficiency Improvements Reduce Energy Use? Empirical Evidence on the Economy-Wide Rebound Effect in Europe and the United States
      by noreply@blogger.com (David Stern) in Stochastic Trend on 2021-06-03 04:36:00
    2. Annual Review 2021
      by noreply@blogger.com (David Stern) in Stochastic Trend on 2021-12-30 06:11:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yunqiang & Ye, Deping & Liu, Sha & Wang, Fang & Zeng, Hui & Tang, Hong, 2024. "Whether the agricultural energy rebound offsets the governance effectiveness of the China's natural resource audit policy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Moneta, Alessio & Pallante, Gianluca, 2022. "Identification of Structural VAR Models via Independent Component Analysis: A Performance Evaluation Study," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    3. Wang, Yongpei & Yan, Qing, 2023. "Is cleaner more efficient? Exploring nonlinear impacts of renewable energy deployment on regional total factor energy efficiency," Renewable Energy, Elsevier, vol. 216(C).
    4. Bin Xu, 2022. "How to Efficiently Reduce the Carbon Intensity of the Heavy Industry in China? Using Quantile Regression Approach," IJERPH, MDPI, vol. 19(19), pages 1-24, October.
    5. Jafari, Mahboubeh & Stern, David I. & Bruns, Stephan B., 2022. "How large is the economy-wide rebound effect in middle income countries? Evidence from Iran," Ecological Economics, Elsevier, vol. 193(C).
    6. Du, Kerui & Liu, Xueyue & Zhao, Cheng, 2023. "Environmental regulation mitigates energy rebound effect," Energy Economics, Elsevier, vol. 125(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jafari, Mahboubeh & Stern, David I. & Bruns, Stephan B., 2022. "How large is the economy-wide rebound effect in middle income countries? Evidence from Iran," Ecological Economics, Elsevier, vol. 193(C).
    2. Bruns, Stephan B. & Moneta, Alessio & Stern, David I., 2021. "Estimating the economy-wide rebound effect using empirically identified structural vector autoregressions," Energy Economics, Elsevier, vol. 97(C).
    3. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Stern, David I., 2020. "How large is the economy-wide rebound effect?," Energy Policy, Elsevier, vol. 147(C).
    5. Cansino, José M. & Ordóñez, Manuel & Prieto, Manuela, 2022. "Decomposition and measurement of the rebound effect: The case of energy efficiency improvements in Spain," Applied Energy, Elsevier, vol. 306(PA).
    6. Rocha, Felipe Freitas da & Almeida, Edmar Luiz Fagundes de, 2021. "A general equilibrium model of macroeconomic rebound effect: A broader view," Energy Economics, Elsevier, vol. 98(C).
    7. Jin, Taeyoung & Kim, Jinsoo, 2019. "A new approach for assessing the macroeconomic growth energy rebound effect," Applied Energy, Elsevier, vol. 239(C), pages 192-200.
    8. Yan, Zheming & Ouyang, Xiaoling & Du, Kerui, 2019. "Economy-wide estimates of energy rebound effect: Evidence from China's provinces," Energy Economics, Elsevier, vol. 83(C), pages 389-401.
    9. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
    10. Maliyamu Abudureheman & Qingzhe Jiang & Xiucheng Dong & Cong Dong, 2022. "CO 2 Emissions in China: Does the Energy Rebound Matter?," Energies, MDPI, vol. 15(12), pages 1-25, June.
    11. Rongxin Wu & Boqiang Lin, 2022. "Does Energy Efficiency Realize Energy Conservation in the Iron and Steel Industry? A Perspective of Energy Rebound Effect," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    12. Blackburn, Christopher J. & Moreno-Cruz, Juan, 2021. "Energy efficiency in general equilibrium with input–output linkages," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    13. Ouyang, Xiaoling & Yang, Yuchuan & Du, Kerui & Cheng, Zhenyu, 2022. "How does residential electricity consumption respond to electricity efficiency improvement? Evidence from 287 prefecture-level cities in China," Energy Policy, Elsevier, vol. 171(C).
    14. Lin, Boqiang & Zhu, Penghu, 2021. "Measurement of the direct rebound effect of residential electricity consumption: An empirical study based on the China family panel studies," Applied Energy, Elsevier, vol. 301(C).
    15. Lemoine, Derek, 2020. "General equilibrium rebound from energy efficiency innovation," European Economic Review, Elsevier, vol. 125(C).
    16. Moneta, Alessio & Pallante, Gianluca, 2022. "Identification of Structural VAR Models via Independent Component Analysis: A Performance Evaluation Study," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    17. Miao, Zhuang & Chen, Xiaodong, 2022. "Combining parametric and non-parametric approach, variable & source -specific productivity changes and rebound effect of energy & environment," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    18. Zimmermann, Michel & Vöhringer, Frank & Thalmann, Philippe & Moreau, Vincent, 2021. "Do rebound effects matter for Switzerland? Assessing the effectiveness of industrial energy efficiency improvements," Energy Economics, Elsevier, vol. 104(C).
    19. Du, Kerui & Liu, Xueyue & Zhao, Cheng, 2023. "Environmental regulation mitigates energy rebound effect," Energy Economics, Elsevier, vol. 125(C).
    20. Figge, Frank & Thorpe, Andrea Stevenson, 2019. "The symbiotic rebound effect in the circular economy," Ecological Economics, Elsevier, vol. 163(C), pages 61-69.

    More about this item

    Keywords

    Energy efficiency; economy-wide rebound effect; climate change; climate policy; Structural FAVAR; Independent Component Analysis.;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssa:lemwps:2021/20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/labssit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.