IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v195y2024ics0301421524003641.html
   My bibliography  Save this article

Green innovation and carbon emission performance: The role of digital economy

Author

Listed:
  • Zhao, Ziyi
  • Zhao, Yuhuan
  • Shi, Xunpeng
  • Zheng, Lu
  • Fan, Shunan
  • Zuo, Sumin

Abstract

Improving carbon emission performance contributes to climate change mitigation, and green innovation may help achieve this goal. Digital economy may promote the diffusion and application of green innovation. Thus, we explore how digital economy affects the impact of green innovation on carbon emission performance based on the panel data covering 240 cities in China from 2005 to 2019. System-generalized method of moments (SYS-GMM), the two stage least square method (2SLS), and the panel quantile regression approach are adopted. The results show that, (1) Green innovation improves carbon emission performance. (2) The digital economy (digital development carrier, digital industrialization, industry digitization, digital development environment) promote the positive impact of green innovation on carbon emission performance. (3) The specifical digital economy elements, such as new digital infrastructure, communication business and services industrialization, service digitalization, institutional and innovation environment also have the positive role. (4) For the mechanism, digital economy is conducive to green innovation for lower energy consumption scale, higher energy efficiency, and cleaner energy structure, thus improving carbon emission performance. (5) Asymmetric analyses imply that green innovation improves carbon emission performance better with developed digital economy.

Suggested Citation

  • Zhao, Ziyi & Zhao, Yuhuan & Shi, Xunpeng & Zheng, Lu & Fan, Shunan & Zuo, Sumin, 2024. "Green innovation and carbon emission performance: The role of digital economy," Energy Policy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:enepol:v:195:y:2024:i:c:s0301421524003641
    DOI: 10.1016/j.enpol.2024.114344
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524003641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Jinyang & Zheng, Huanyu & Vardanyan, Michael & Shen, Zhiyang, 2023. "Achieving carbon neutrality through green technological progress: evidence from China," Energy Policy, Elsevier, vol. 173(C).
    2. Wei, Jia & Wen, Jun & Wang, Xiao-Yang & Ma, Jie & Chang, Chun-Ping, 2023. "Green innovation, natural extreme events, and energy transition: Evidence from Asia-Pacific economies," Energy Economics, Elsevier, vol. 121(C).
    3. Zhang, Wei & You, Jianmin & Lin, Weiwen, 2021. "Internet plus and China industrial system's low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Wang, Zhaohua & Yang, Zhongmin & Zhang, Yixiang & Yin, Jianhua, 2012. "Energy technology patents–CO2 emissions nexus: An empirical analysis from China," Energy Policy, Elsevier, vol. 42(C), pages 248-260.
    5. Jiang, Renai & Saeed, Muhammad & Yang, Shenghao & Saqib, Shahab E., 2023. "The impact-mechanism of “Internet +” on the innovation performance of traditional enterprises: Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    6. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    7. Zheng, Huanyu & Song, Malin & Shen, Zhiyang, 2021. "The evolution of renewable energy and its impact on carbon reduction in China," Energy, Elsevier, vol. 237(C).
    8. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    9. Zhao, Ziyi & Zhao, Yuhuan & Lv, Xin & Li, Xiaoping & Zheng, Lu & Fan, Shunan & Zuo, Sumin, 2024. "Environmental regulation and green innovation: Does state ownership matter?," Energy Economics, Elsevier, vol. 136(C).
    10. Huang, Junbing & Xiang, Shiqi & Wang, Yajun & Chen, Xiang, 2021. "Energy-saving R&D and carbon intensity in China," Energy Economics, Elsevier, vol. 98(C).
    11. Alam, Md. Mahmudul & Murad, Md. Wahid, 2020. "The impacts of economic growth, trade openness and technological progress on renewable energy use in organization for economic co-operation and development countries," Renewable Energy, Elsevier, vol. 145(C), pages 382-390.
    12. Lee, Chien-Chiang & Wang, Chang-song, 2022. "Financial development, technological innovation and energy security: Evidence from Chinese provincial experience," Energy Economics, Elsevier, vol. 112(C).
    13. Awaworyi Churchill, Sefa & Inekwe, John & Smyth, Russell & Zhang, Xibin, 2019. "R&D intensity and carbon emissions in the G7: 1870–2014," Energy Economics, Elsevier, vol. 80(C), pages 30-37.
    14. Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
    15. Aydin, Mucahit & Bozatli, Oguzhan, 2023. "The effects of green innovation, environmental taxes, and financial development on renewable energy consumption in OECD countries," Energy, Elsevier, vol. 280(C).
    16. Zhang, Qi & Yu, Zhi & Kong, Dongmin, 2019. "The real effect of legal institutions: Environmental courts and firm environmental protection expenditure," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    17. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    18. Wang, H. & Ang, B.W., 2018. "Assessing the role of international trade in global CO2 emissions: An index decomposition analysis approach," Applied Energy, Elsevier, vol. 218(C), pages 146-158.
    19. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Does innovation respond to climate change? Empirical evidence from patents and greenhouse gas emissions," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 49-62.
    20. Munir, Qaiser & Lean, Hooi Hooi & Smyth, Russell, 2020. "CO2 emissions, energy consumption and economic growth in the ASEAN-5 countries: A cross-sectional dependence approach," Energy Economics, Elsevier, vol. 85(C).
    21. Alam, Md. Samsul & Atif, Muhammad & Chien-Chi, Chu & Soytaş, Uğur, 2019. "Does corporate R&D investment affect firm environmental performance? Evidence from G-6 countries," Energy Economics, Elsevier, vol. 78(C), pages 401-411.
    22. Muhammad, Sulaman & Long, Xingle & Salman, Muhammad & Dauda, Lamini, 2020. "Effect of urbanization and international trade on CO2 emissions across 65 belt and road initiative countries," Energy, Elsevier, vol. 196(C).
    23. Jingyi Wang & Xiucheng Dong & Hui Qiao & Kangyin Dong, 2020. "Impact assessment of agriculture, energy and water on CO2 emissions in China: untangling the differences between major and non-major grain-producing areas," Applied Economics, Taylor & Francis Journals, vol. 52(60), pages 6482-6497, December.
    24. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    25. Shahbaz, Muhammad & Li, Jiaman & Dong, Xiucheng & Dong, Kangyin, 2022. "How financial inclusion affects the collaborative reduction of pollutant and carbon emissions: The case of China," Energy Economics, Elsevier, vol. 107(C).
    26. Shao, Shuai & Yang, Lili, 2014. "Natural resource dependence, human capital accumulation, and economic growth: A combined explanation for the resource curse and the resource blessing," Energy Policy, Elsevier, vol. 74(C), pages 632-642.
    27. Tang, Maogang & Liu, Yinlin & Hu, Fengxia & Wu, Baijun, 2023. "Effect of digital transformation on enterprises' green innovation: Empirical evidence from listed companies in China," Energy Economics, Elsevier, vol. 128(C).
    28. Sapkota, Pratikshya & Bastola, Umesh, 2017. "Foreign direct investment, income, and environmental pollution in developing countries: Panel data analysis of Latin America," Energy Economics, Elsevier, vol. 64(C), pages 206-212.
    29. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    30. Lu, Ling & Liu, Peng & Yu, Jian & Shi, Xunpeng, 2023. "Digital inclusive finance and energy transition towards carbon neutrality: Evidence from Chinese firms," Energy Economics, Elsevier, vol. 127(PB).
    31. Fan, Meiting & Shao, Shuai & Yang, Lili, 2015. "Combining global Malmquist–Luenberger index and generalized method of moments to investigate industrial total factor CO2 emission performance: A case of Shanghai (China)," Energy Policy, Elsevier, vol. 79(C), pages 189-201.
    32. Ahmad, Munir & Wu, Yiyun, 2022. "Natural resources, technological progress, and ecological efficiency: Does financial deepening matter for G-20 economies?," Resources Policy, Elsevier, vol. 77(C).
    33. Sun, Guanglin & Fang, Jiming & Li, Jinning & Wang, Xiaolin, 2024. "Research on the impact of the integration of digital economy and real economy on enterprise green innovation," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    34. Li, Wei & Cao, Ning & Xiang, Zejia, 2023. "Drivers of renewable energy transition: The role of ICT, human development, financialization, and R&D investment in China," Renewable Energy, Elsevier, vol. 206(C), pages 441-450.
    35. Gao, Jingyi & Ren, Yuanming, 2023. "Does innovation save more energy? Evidence from Chinese Firms," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 638-646.
    36. Wang, Yafei & Liao, Meng & Wang, Yafei & Xu, Lixiao & Malik, Arunima, 2021. "The impact of foreign direct investment on China's carbon emissions through energy intensity and emissions trading system," Energy Economics, Elsevier, vol. 97(C).
    37. Ma, Guangcheng & Qin, Jiahong & Zhang, Yumeng, 2023. "Does the carbon emissions trading system reduce carbon emissions by promoting two-way FDI in developing countries? Evidence from Chinese listed companies and cities," Energy Economics, Elsevier, vol. 120(C).
    38. Fang, Zhen & Razzaq, Asif & Mohsin, Muhammad & Irfan, Muhammad, 2022. "Spatial spillovers and threshold effects of internet development and entrepreneurship on green innovation efficiency in China," Technology in Society, Elsevier, vol. 68(C).
    39. Khuda Bakhsh & Sobia Rose & Muhammad Faisal Ali & Najid Ahmad & Muhammad Shahbaz, 2017. "Economic growth, CO2 emissions, renewable waste and FDI relation in Pakistan: New evidences from 3SLS," Post-Print hal-02000433, HAL.
    40. Hao, Yu & Li, Ying & Guo, Yunxia & Chai, Jingxia & Yang, Chuxiao & Wu, Haitao, 2022. "Digitalization and electricity consumption: Does internet development contribute to the reduction in electricity intensity in China?," Energy Policy, Elsevier, vol. 164(C).
    41. Xu, Le & Fan, Meiting & Yang, Lili & Shao, Shuai, 2021. "Heterogeneous green innovations and carbon emission performance: Evidence at China's city level," Energy Economics, Elsevier, vol. 99(C).
    42. Nicholas Stern & Anna Valero, 2021. "Innovation, growth and the transition to net-zero emissions," CEP Discussion Papers dp1773, Centre for Economic Performance, LSE.
    43. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    44. Nicholas Stern & Anna Valero, 2021. "Innovation, growth and the transition to net-zero emissions," POID Working Papers 008, Centre for Economic Performance, LSE.
    45. Chen, Huanyu & Yi, Jizheng & Chen, Aibin & Peng, Duanxiang & Yang, Jieqiong, 2023. "Green technology innovation and CO2 emission in China: Evidence from a spatial-temporal analysis and a nonlinear spatial durbin model," Energy Policy, Elsevier, vol. 172(C).
    46. Lin, Boqiang & Wang, Miao, 2021. "What drives energy intensity fall in China? Evidence from a meta-frontier approach," Applied Energy, Elsevier, vol. 281(C).
    47. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    48. Luo, Yusen & Lu, Zhengnan & Wu, Chao, 2023. "Can internet development accelerate the green innovation efficiency convergence: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    49. Salahuddin, Mohammad & Gow, Jeff, 2014. "Economic growth, energy consumption and CO2 emissions in Gulf Cooperation Council countries," Energy, Elsevier, vol. 73(C), pages 44-58.
    50. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Le & Fan, Meiting & Yang, Lili & Shao, Shuai, 2021. "Heterogeneous green innovations and carbon emission performance: Evidence at China's city level," Energy Economics, Elsevier, vol. 99(C).
    2. Luo, Yusen & Lu, Zhengnan & Wu, Chao, 2023. "Can internet development accelerate the green innovation efficiency convergence: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    3. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    4. Yi, Jiahui & Dai, Sheng & Li, Lin & Cheng, Jinhua, 2024. "How does digital economy development affect renewable energy innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    5. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    6. Zhang, Sheng-Hao & Yang, Jun & Feng, Chao, 2023. "Can internet development alleviate energy poverty? Evidence from China," Energy Policy, Elsevier, vol. 173(C).
    7. Li, Chengyou & Zheng, Chunji & Liu, Mengxun & Wang, Zeru, 2024. "Digital economy spillover on energy saving and emission reduction: Evidence from China," Energy, Elsevier, vol. 308(C).
    8. Xu, Le & Yang, Lili & Li, Ding & Shao, Shuai, 2023. "Asymmetric effects of heterogeneous environmental standards on green technology innovation: Evidence from China," Energy Economics, Elsevier, vol. 117(C).
    9. Bai, Ling & Guo, Tianran & Xu, Wei & Liu, Yaobin & Kuang, Ming & Jiang, Lei, 2023. "Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model," Energy Policy, Elsevier, vol. 183(C).
    10. Liao, Kaicheng & Liu, Juan, 2024. "Digital infrastructure empowerment and urban carbon emissions: Evidence from China," Telecommunications Policy, Elsevier, vol. 48(6).
    11. Yu Hao & Jingwen Huang & Yunxia Guo & Haitao Wu & Siyu Ren, 2022. "Does the legacy of state planning put pressure on ecological efficiency? Evidence from China," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3100-3121, November.
    12. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    13. Lin, Boqiang & Huang, Chenchen, 2023. "How will promoting the digital economy affect electricity intensity?," Energy Policy, Elsevier, vol. 173(C).
    14. Lyu, Yanwei & Zhang, Jinning & Wang, Wenqiang & Li, Yutao & Geng, Yong, 2024. "Toward low carbon development through digital economy: A new perspective of factor market distortion," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    15. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Assessing energy poverty and its effect on CO2 emissions: The case of China," Energy Economics, Elsevier, vol. 97(C).
    16. Pan, Minjie & Zhao, Xin & lv, Kangjuan & Rosak-Szyrocka, Joanna & Mentel, Grzegorz & Truskolaski, Tadeusz, 2023. "Internet development and carbon emission-reduction in the era of digitalization: Where will resource-based cities go?," Resources Policy, Elsevier, vol. 81(C).
    17. Huang, Hongyun & Mbanyele, William & Fan, Shuangshuang & Zhao, Xin, 2022. "Digital financial inclusion and energy-environment performance: What can learn from China," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 342-366.
    18. Chai, Jingxia & Wu, Haitao & Hao, Yu, 2022. "Planned economic growth and controlled energy demand: How do regional growth targets affect energy consumption in China?," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    19. Ma, Guangcheng & Qin, Jiahong & Zhang, Yumeng, 2023. "Does the carbon emissions trading system reduce carbon emissions by promoting two-way FDI in developing countries? Evidence from Chinese listed companies and cities," Energy Economics, Elsevier, vol. 120(C).
    20. Cheng, Xiaoqiang & Yao, Dingjun & Qian, Yuanyuan & Wang, Bin & Zhang, Deliang, 2023. "How does fintech influence carbon emissions: Evidence from China's prefecture-level cities," International Review of Financial Analysis, Elsevier, vol. 87(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:195:y:2024:i:c:s0301421524003641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.