IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6689-d1450170.html
   My bibliography  Save this article

Development and Sensitivity Analysis of an Improved Harmony Search Algorithm with a Multiple Memory Structure for Large-Scale Optimization Problems in Water Distribution Networks

Author

Listed:
  • Ho-Min Lee

    (Water & Wastewater Research Center, K-Water Research Institute, Yuseong-gu, Daejeon 34045, Republic of Korea)

  • Ali Sadollah

    (Department of Mechanical Engineering, Faculty of Engineering, University of Science and Culture, Tehran 13145-871, Iran)

  • Young-Hwan Choi

    (Department of Civil and Infrastructure Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea)

  • Jin-Gul Joo

    (Department of Civil and Environmental Engineering, Dongshin University, Naju 58245, Republic of Korea)

  • Do-Guen Yoo

    (Department of Civil Engineering, University of Suwon, Hwaseong-si 18323, Republic of Korea)

Abstract

The continuous supply of drinking water for human life is essential to ensure the sustainability of cities, society, and the environment. At a time when water scarcity is worsening due to climate change, the construction of an optimized water supply infrastructure is necessary. In this study, an improved version of the Harmony Search Algorithm (HSA), named the Maisonette-type Harmony Search Algorithm (MTHSA), was developed. Unlike the HSA, the MTHSA has a two-floor structure, which increases the optimizing efficiency by employing multiple explorations on the first floor and additional exploitations of excellent solutions. Parallel explorations enhance the ability in terms of exploration (global search), which is the tendency to uniformly explore the entire search space. Additional exploitations among excellent solutions also enhance the ability of local searches (effective exploitation), which is the intensive exploration of solutions that seem to have high possibilities. Following the development of the improved algorithm, it was applied to water distribution networks in order to verify its efficiency, and the numerical results were analyzed. Through the considered applications, the improved algorithm is shown to be highly efficient when applied to large-scale optimization problems with large numbers of decision variables, as shown in comparison with the considered optimizers.

Suggested Citation

  • Ho-Min Lee & Ali Sadollah & Young-Hwan Choi & Jin-Gul Joo & Do-Guen Yoo, 2024. "Development and Sensitivity Analysis of an Improved Harmony Search Algorithm with a Multiple Memory Structure for Large-Scale Optimization Problems in Water Distribution Networks," Sustainability, MDPI, vol. 16(15), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6689-:d:1450170
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6689/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6689/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Reca & J. Martínez & C. Gil & R. Baños, 2008. "Application of Several Meta-Heuristic Techniques to the Optimization of Real Looped Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1367-1379, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Mora-Melia & P. Iglesias-Rey & F. Martinez-Solano & V. Fuertes-Miquel, 2013. "Design of Water Distribution Networks using a Pseudo-Genetic Algorithm and Sensitivity of Genetic Operators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4149-4162, September.
    2. Milan Cisty, 2010. "Hybrid Genetic Algorithm and Linear Programming Method for Least-Cost Design of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 1-24, January.
    3. João Marques & Maria Cunha & Dragan Savić & Orazio Giustolisi, 2017. "Water Network Design Using a Multiobjective Real Options Framework," Journal of Optimization, Hindawi, vol. 2017, pages 1-13, January.
    4. Hossein Fallah & Ozgur Kisi & Sungwon Kim & Mohammad Rezaie-Balf, 2019. "A New Optimization Approach for the Least-Cost Design of Water Distribution Networks: Improved Crow Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3595-3613, August.
    5. J. Yazdi, 2016. "Decomposition based Multi Objective Evolutionary Algorithms for Design of Large-Scale Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2749-2766, June.
    6. M. Pasha & Kevin Lansey, 2014. "Strategies to Develop Warm Solutions for Real-Time Pump Scheduling for Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3975-3987, September.
    7. Ali Haghighi & Amin Bakhshipour, 2012. "Optimization of Sewer Networks Using an Adaptive Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3441-3456, September.
    8. Mohammad Rahimi & Ali Haghighi, 2015. "A Graph Portioning Approach for Hydraulic Analysis-Design of Looped Pipe Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5339-5352, November.
    9. Nikolai Gorev & Inna Kodzhespirova & Yuriy Kovalenko & Rogelio Álvarez & Eugenio Prokhorov & Alfredo Ramos, 2011. "Evolutionary Testing of Hydraulic Simulator Functionality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 1935-1947, June.
    10. A. Shibu & M. Reddy, 2014. "Optimal Design of Water Distribution Networks Considering Fuzzy Randomness of Demands Using Cross Entropy Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4075-4094, September.
    11. Annelies De Corte & Kenneth Sörensen, 2014. "HydroGen: an Artificial Water Distribution Network Generator," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 333-350, January.
    12. Yousef Hassanzadeh & Amin Abdi & Siamak Talatahari & Vijay Singh, 2011. "Meta-Heuristic Algorithms for Hydrologic Frequency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(7), pages 1855-1879, May.
    13. De Corte, Annelies & Sörensen, Kenneth, 2013. "Optimisation of gravity-fed water distribution network design: A critical review," European Journal of Operational Research, Elsevier, vol. 228(1), pages 1-10.
    14. DE CORTE, Annelies & SÖRENSEN, Kenneth, 2012. "Optimisation of water distribution network design: a critical review," Working Papers 2012016, University of Antwerp, Faculty of Business and Economics.
    15. Pérez-Sánchez, Modesto & Sánchez-Romero, Francisco Javier & López-Jiménez, P. Amparo & Ramos, Helena M., 2018. "PATs selection towards sustainability in irrigation networks: Simulated annealing as a water management tool," Renewable Energy, Elsevier, vol. 116(PA), pages 234-249.
    16. Chih-Liang Kuo & Nien-Sheng Hsu, 2011. "An Optimization Model for Crucial Key Pipes and Mechanical Reliability: A Case Study on a Water Distribution System in Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 763-775, January.
    17. Ali Haghighi & Hossein Samani & Zeinab Samani, 2011. "GA-ILP Method for Optimization of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(7), pages 1791-1808, May.
    18. Mahsa Amirabdollahian & Morteza Mokhtari, 2015. "Optimal Design of Pumped Water Distribution Networks with Storage Under Uncertain Hydraulic Constraints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2637-2653, June.
    19. I. Fernández García & P. Montesinos & E. Camacho Poyato & J. A. Rodríguez Díaz, 2017. "Optimal Design of Pressurized Irrigation Networks to Minimize the Operational Cost under Different Management Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1995-2010, April.
    20. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6689-:d:1450170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.