IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6491-d1445559.html
   My bibliography  Save this article

An Economic Optimization Model of an E-Waste Supply Chain Network: Machine Learned Kinetic Modelling for Sustainable Production

Author

Listed:
  • Biswajit Debnath

    (Aston Centre for Artificial Intelligence Research & Applications (ACAIRA), Department of Applied Mathematics and Data Science, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
    Department of Chemical Engineering, Jadavpur University, Kolkata 700032, India)

  • Amit K. Chattopadhyay

    (Aston Centre for Artificial Intelligence Research & Applications (ACAIRA), Department of Applied Mathematics and Data Science, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK)

  • T. Krishna Kumar

    (Rockville-Analytics, Rockville, MD 20850, USA)

Abstract

Purpose: E-waste management (EWM) refers to the operation management of discarded electronic devices, a challenge exacerbated due to overindulgent urbanization. The main purpose of this paper is to amalgamate production engineering, statistical methods, mathematical modelling, supported with Machine Learning to develop a dynamic e-waste supply chain model. Method Used: This article presents a multidimensional, cost function-based analysis of the EWM framework structured on three modules including environmental, economic, and social uncertainties in material recovery from an e-waste (MREW) plant, including the production–delivery–utilization process. Each module is ranked using Machine Learning (ML) protocols—Analytical Hierarchical Process (AHP) and combined AHP-Principal Component Analysis (PCA). Findings: This model identifies and probabilistically ranks two key sustainability contributors to the EWM supply chain: energy consumption and carbon dioxide emission. Additionally, the precise time window of 400–600 days from the start of the operation is identified for policy resurrection. Novelty: Ours is a data-intensive model that is founded on sustainable product designing in line with SDG requirements. The combined AHP-PCA consistently outperformed traditional statistical tools, and is the second novelty. Model ratification using real e-waste plant data is the third novelty. Implications: The Machine Learning framework embeds a powerful probabilistic prediction algorithm based on data-based decision making in future e-waste sustained roadmaps.

Suggested Citation

  • Biswajit Debnath & Amit K. Chattopadhyay & T. Krishna Kumar, 2024. "An Economic Optimization Model of an E-Waste Supply Chain Network: Machine Learned Kinetic Modelling for Sustainable Production," Sustainability, MDPI, vol. 16(15), pages 1-25, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6491-:d:1445559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6491/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6491/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pulley, Lawrence B & Braunstein, Yale M, 1992. "A Composite Cost Function for Multiproduct Firms with an Application to Economies of Scope in Banking," The Review of Economics and Statistics, MIT Press, vol. 74(2), pages 221-230, May.
    2. Leyla Özgür Polat & Olcay Polat & Aşkıner Güngör, 2019. "Designing Fuzzy Reverse Supply Chain Network For E-Waste," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 13(1), pages 367-375.
    3. Biswajit Debnath & Rihab El-Hassani & Amit K Chattopadhyay & T Krishna Kumar & Sadhan K Ghosh & Rahul Baidya, 2022. "Time Evolution of a Supply Chain Network: Kinetic Modeling," Papers 2209.01138, arXiv.org.
    4. Diewert, W E, 1971. "An Application of the Shephard Duality Theorem: A Generalized Leontief Production Function," Journal of Political Economy, University of Chicago Press, vol. 79(3), pages 481-507, May-June.
    5. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    6. Zhu, You & Zhou, Li & Xie, Chi & Wang, Gang-Jin & Nguyen, Truong V., 2019. "Forecasting SMEs' credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach," International Journal of Production Economics, Elsevier, vol. 211(C), pages 22-33.
    7. Kumar, Amit & Holuszko, Maria & Espinosa, Denise Crocce Romano, 2017. "E-waste: An overview on generation, collection, legislation and recycling practices," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 32-42.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Chávez & Felipe J. Fonseca & Manuel Gómez-Zaldívar, 2017. "Resoluciones de disputas comerciales y desempeño económico regional en México. (Commercial Disputes Resolution and Regional Economic Performance in Mexico)," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 79-93, May.
    2. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    3. Berger, Allen N. & Hasan, Iftekhar & Zhou, Mingming, 2010. "The effects of focus versus diversification on bank performance: Evidence from Chinese banks," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1417-1435, July.
    4. Yan Yu Chen & Chun-Cheih Chao & Fu-Chen Liu & Po-Chen Hsu & Hsueh-Fen Chen & Shih-Chi Peng & Yung-Jen Chuang & Chung-Yu Lan & Wen-Ping Hsieh & David Shan Hill Wong, 2013. "Dynamic Transcript Profiling of Candida albicans Infection in Zebrafish: A Pathogen-Host Interaction Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    5. Barnett, William A. & Serletis, Apostolos, 2008. "Consumer preferences and demand systems," Journal of Econometrics, Elsevier, vol. 147(2), pages 210-224, December.
    6. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    7. Frédéric Reynès, 2011. "The cobb-douglas function as an approximation of other functions," SciencePo Working papers Main hal-01069515, HAL.
    8. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    9. Simplice A. Asongu & Nicholas M. Odhiambo, 2019. "Governance, capital flight and industrialisation in Africa," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-22, December.
    10. M. J. Aziakpono & S. Kleimeier & H. Sander, 2012. "Banking market integration in the SADC countries: evidence from interest rate analyses," Applied Economics, Taylor & Francis Journals, vol. 44(29), pages 3857-3876, October.
    11. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    12. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    13. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    14. Barnett, William A. & Serletis, Apostolos, 2008. "The Differential Approach to Demand Analysis and the Rotterdam Model," MPRA Paper 12319, University Library of Munich, Germany.
    15. Ionela Munteanu & Adriana Grigorescu & Elena Condrea & Elena Pelinescu, 2020. "Convergent Insights for Sustainable Development and Ethical Cohesion: An Empirical Study on Corporate Governance in Romanian Public Entities," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    16. Daniel Boss & Annick Hoffmann & Benjamin Rappaz & Christian Depeursinge & Pierre J Magistretti & Dimitri Van de Ville & Pierre Marquet, 2012. "Spatially-Resolved Eigenmode Decomposition of Red Blood Cells Membrane Fluctuations Questions the Role of ATP in Flickering," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-10, August.
    17. Doukas, Haris & Papadopoulou, Alexandra & Savvakis, Nikolaos & Tsoutsos, Theocharis & Psarras, John, 2012. "Assessing energy sustainability of rural communities using Principal Component Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1949-1957.
    18. Uddin, Gazi Salah & Tang, Ou & Sahamkhadam, Maziar & Taghizadeh-Hesary, Farhad & Yahya, Muhammad & Cerin, Pontus & Rehme, Jakob, 2021. "Analysis of Forecasting Models in an Electricity Market under Volatility," ADBI Working Papers 1212, Asian Development Bank Institute.
    19. Sébastien Marchand, 2011. "Technical Efficiency, Farm Size and Tropical Deforestation in the Brazilian Amazonian Forest," Working Papers halshs-00552981, HAL.
    20. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6491-:d:1445559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.