IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6489-d1445511.html
   My bibliography  Save this article

Reliability, Availability, and Maintainability Assessment-Based Sustainability-Informed Maintenance Optimization in Power Transmission Networks

Author

Listed:
  • Motahareh Sagharidooz

    (Department of Management, Faculty of Economics and Administrative Sciences, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran)

  • Hamzeh Soltanali

    (Department of Industrial Engineering, Imam Hossein University, Tehran 1698715861, Iran)

  • José Torres Farinha

    (RCM2+ Research Centre for Asset Management and Systems Engineering, Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes—Quinta da Nora, 3030-199 Coimbra, Portugal)

  • Hugo D. N. Raposo

    (RCM2+ Research Centre for Asset Management and Systems Engineering, Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes—Quinta da Nora, 3030-199 Coimbra, Portugal)

  • José Edmundo de-Almeida-e-Pais

    (RCM2+ Research Centre for Asset Management and Systems Engineering, Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes—Quinta da Nora, 3030-199 Coimbra, Portugal
    RCM2+ Research Centre for Asset Management and Systems Engineering, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal
    CISE—Electromechatronic Systems Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal)

Abstract

Reliable and resilient power transmission networks serve as vital for sustainable development and uninterrupted electricity supply. Effective maintenance programs are necessary to comply with reliability and sustainability requirements in the power sector. To that end, RAM (reliability, availability, and maintainability) assessments can provide efficient maintenance services that minimize adverse consequences and increase productivity at the lowest possible cost. We employ a statistical framework to evaluate RAM principles, including data acquisition, homogenization, trend hypothesis validation, and parameter estimation. The RAM evaluation of power transmission networks identifies primary bottlenecks in subsystems based on failure and repair behavior trends, which should be prioritized. To find the optimal maintenance policies for each subsystem, we adapt a Multi-Attribute Utility Theory (MAUT) approach, taking costs, availability, and dependability into account. The results of this approach can help improve the operational performance and sustainability of power transmission networks.

Suggested Citation

  • Motahareh Sagharidooz & Hamzeh Soltanali & José Torres Farinha & Hugo D. N. Raposo & José Edmundo de-Almeida-e-Pais, 2024. "Reliability, Availability, and Maintainability Assessment-Based Sustainability-Informed Maintenance Optimization in Power Transmission Networks," Sustainability, MDPI, vol. 16(15), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6489-:d:1445511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6489/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6489/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yousif Munadhil Ibrahim & Norsiah Hami & Siti Norezam Othman, 2019. "Integrating Sustainable Maintenance into Sustainable Manufacturing Practices and its Relationship with Sustainability Performance: A Conceptual Framework," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 30-39.
    2. Pramod R. Sonawane & Sheetal Bhandari & Rajkumar Bhimgonda Patil & Sameer Al-Dahidi, 2023. "Reliability and Criticality Analysis of a Large-Scale Solar Photovoltaic System Using Fault Tree Analysis Approach," Sustainability, MDPI, vol. 15(5), pages 1-24, March.
    3. Garmabaki, A.H.S. & Ahmadi, Alireza & Block, Jan & Pham, Hoang & Kumar, Uday, 2016. "A reliability decision framework for multiple repairable units," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 78-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barabadi, A. & Ayele, Y.Z., 2018. "Post-disaster infrastructure recovery: Prediction of recovery rate using historical data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 209-223.
    2. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    3. Hamzeh Soltanali & A.H.S Garmabaki & Adithya Thaduri & Aditya Parida & Uday Kumar & Abbas Rohani, 2019. "Sustainable production process: An application of reliability, availability, and maintainability methodologies in automotive manufacturing," Journal of Risk and Reliability, , vol. 233(4), pages 682-697, August.
    4. Rezgar Zaki & Abbas Barabadi & Javad Barabady & Ali Nouri Qarahasanlou, 2022. "Observed and unobserved heterogeneity in failure data analysis," Journal of Risk and Reliability, , vol. 236(1), pages 194-207, February.
    5. Reza Barabadi & Mohammad Ataei & Reza Khalokakaie & Ali Nouri Qarahasanlou, 2021. "Spare-part management in a heterogeneous environment," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-14, March.
    6. Xiaogang Pan & Kangli Liu & Jianhua Wang & Yutao Hu & Jianfeng Zhao, 2023. "Capacity Allocation Method Based on Historical Data-Driven Search Algorithm for Integrated PV and Energy Storage Charging Station," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    7. Rajkumar Bhimgonda Patil & Arun Khalkar & Sameer Al-Dahidi & Rita S. Pimpalkar & Sheetal Bhandari & Michael Pecht, 2024. "A Reliability and Risk Assessment of Solar Photovoltaic Panels Using a Failure Mode and Effects Analysis Approach: A Case Study," Sustainability, MDPI, vol. 16(10), pages 1-27, May.
    8. Awat Ghomghaleh & Reza Khaloukakaie & Mohammad Ataei & Abbas Barabadi & Ali Nouri Qarahasanlou & Omeid Rahmani & Amin Beiranvand Pour, 2020. "Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    9. Ali N Qarahasanlou & Abbas Barabadi & Yonas Z Ayele, 2018. "Production performance analysis during operation phase: A case study," Journal of Risk and Reliability, , vol. 232(6), pages 559-575, December.
    10. Slimacek, Vaclav & Lindqvist, Bo Henry, 2017. "Nonhomogeneous Poisson process with nonparametric frailty and covariates," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 75-83.
    11. Ezutah Udoncy Olugu & Kuan Yew Wong & Jonathan Yong Chung Ee & Yslam D. Mammedov, 2022. "Incorporating Sustainability and Maintenance for Performance Assessment of Offshore Oil and Gas Platforms: A Perspective," Sustainability, MDPI, vol. 14(2), pages 1-19, January.
    12. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "Resilience analysis: A formulation to model risk factors on complex system resilience," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 871-883, October.
    13. Iyad Alawaysheh & Imad Alsyouf & Zain El-Abideen Tahboub & Hossam S. Almahasneh, 2020. "Selecting maintenance practices based on environmental criteria: a comparative analysis of theory and practice in the public transport sector in UAE/DUBAI," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1133-1155, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6489-:d:1445511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.