IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p6235-d1439814.html
   My bibliography  Save this article

Straw Logistics Network Optimization Considering Cost Importance and Carbon Emission under the Concept of Sustainable Development

Author

Listed:
  • Jia Mao

    (School of Transportation, Jilin University, Changchun 130022, China)

  • Shiqi Zhang

    (School of Transportation, Jilin University, Changchun 130022, China)

  • Jin Liu

    (School of Foreign Languages, Changchun University of Science and Technology, Changchun 130013, China)

Abstract

As biomass power generation projects progress, the supply chain of biomass resources has become a key link for the green development of biomass power facilities. The role of biomass recycling logistics in the sustainable development of biomass resources and power generation endeavors has grown increasingly significant. To realize environmentally friendly and economical straw logistics, it is imperative to establish an efficient, economic and sustainable straw recycling logistics network. Therefore, based on the weighting theory and top-down method, this study proposes a planning model aiming at minimum total cost and minimum carbon emission to locate the logistics network. The immune algorithm is applied to solve and analyze the proposed examples. It is concluded that under the condition that the total cost is reasonable, reducing transportation cost. The verification model can enhance the environmental and economic performance of straw logistics networks. From the perspective of theory and practice, we provide ideas for the optimization of relevant biomass logistics networks and promote the realization of low-carbon sustainable development of logistics networks.

Suggested Citation

  • Jia Mao & Shiqi Zhang & Jin Liu, 2024. "Straw Logistics Network Optimization Considering Cost Importance and Carbon Emission under the Concept of Sustainable Development," Sustainability, MDPI, vol. 16(14), pages 1-32, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6235-:d:1439814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/6235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/6235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xingwei & Cai, Yanpeng & Dai, Chao, 2014. "Evaluating China's biomass power production investment based on a policy benefit real options model," Energy, Elsevier, vol. 73(C), pages 751-761.
    2. Yiqiang Zhang & Hussam Alshraideh & Ali Diabat, 2018. "A stochastic reverse logistics production routing model with environmental considerations," Annals of Operations Research, Springer, vol. 271(2), pages 1023-1044, December.
    3. Wang, Zhanwu & Wang, Zhenfeng & Tahir, Nadeem & Wang, Heng & Li, Jin & Xu, Guangyin, 2020. "Study of synergetic development in straw power supply chain: Straw price and government subsidy as incentive," Energy Policy, Elsevier, vol. 146(C).
    4. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Rice straw supply chain for electricity generation in Malaysia: Economical and environmental assessment," Applied Energy, Elsevier, vol. 135(C), pages 299-308.
    5. Wu, Juanjuan & Zhang, Jian & Yi, Weiming & Cai, Hongzhen & Su, Zhanpeng & Li, Yang, 2021. "Economic analysis of different straw supply modes in China," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhanwu Wang & Guangyin Xu & Zhenfeng Wang & Zhiping Zhang, 2022. "Sustainability of agricultural waste power generation industry in China: criteria relationship identification and policy design mechanism," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3371-3395, March.
    2. Yuqun Dong & Yaming Zhuang, 2023. "Research on an Investment Decision Model of Waste Incineration Power under Demand Guarantee Policies," Sustainability, MDPI, vol. 15(15), pages 1-19, July.
    3. Linnerud, Kristin & Andersson, Ane Marte & Fleten, Stein-Erik, 2014. "Investment timing under uncertain renewable energy policy: An empirical study of small hydropower projects," Energy, Elsevier, vol. 78(C), pages 154-164.
    4. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    5. Dahlen, Niklas & Fehrenkötter, Rieke & Schreiter, Maximilian, 2024. "The new bond on the block — Designing a carbon-linked bond for sustainable investment projects," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 316-325.
    6. Castellano, Davide & Gallo, Mosè & Grassi, Andrea & Santillo, Liberatina C., 2019. "The effect of GHG emissions on production, inventory replenishment and routing decisions in a single vendor-multiple buyers supply chain," International Journal of Production Economics, Elsevier, vol. 218(C), pages 30-42.
    7. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    8. See, Justin & Cuaton, Ginbert Permejo & Placino, Pryor & Vunibola, Suliasi & Thi, Huong Do & Dombroski, Kelly & McKinnon, Katharine, 2024. "From absences to emergences: Foregrounding traditional and Indigenous climate change adaptation knowledges and practices from Fiji, Vietnam and the Philippines," World Development, Elsevier, vol. 176(C).
    9. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    10. Liu, Shen & Colson, Gregory & Wetzstein, Michael, 2018. "Biodiesel investment in a disruptive tax-credit policy environment," Energy Policy, Elsevier, vol. 123(C), pages 19-30.
    11. Chen, Huadong & Wang, Can & Cai, Wenjia & Wang, Jianhui, 2018. "Simulating the impact of investment preference on low-carbon transition in power sector," Applied Energy, Elsevier, vol. 217(C), pages 440-455.
    12. Zhang, Huan & Duan, Xianglei & Jiang, Jianli, 2024. "Fixed rebate subsidy vs. unit price subsidy: Incentive effect on the biomass power supply chain," Energy Policy, Elsevier, vol. 187(C).
    13. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    14. Tian, Lixin & Pan, Jianglai & Du, Ruijin & Li, Wenchao & Zhen, Zaili & Qibing, Gao, 2017. "The valuation of photovoltaic power generation under carbon market linkage based on real options," Applied Energy, Elsevier, vol. 201(C), pages 354-362.
    15. Locatelli, Giorgio & Mancini, Mauro & Lotti, Giovanni, 2020. "A simple-to-implement real options method for the energy sector," Energy, Elsevier, vol. 197(C).
    16. Zakaria Chekoubi & Wajdi Trabelsi & Nathalie Sauer & Ilias Majdouline, 2022. "The Integrated Production-Inventory-Routing Problem with Reverse Logistics and Remanufacturing: A Two-Phase Decomposition Heuristic," Sustainability, MDPI, vol. 14(20), pages 1-30, October.
    17. Mingming Zhang & Dequn Zhou & Hao Ding & Jingliang Jin, 2016. "Biomass Power Generation Investment in China: A Real Options Evaluation," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    18. Gao, Jing & Wang, Chao & Wang, Zhanwu & Lin, Jin & Zhang, Runkai & Wu, Xin & Xu, Guangyin & Wang, Zhenfeng, 2024. "Site selection decision for biomass cogeneration projects from a sustainable perspective: A case study of China," Energy, Elsevier, vol. 286(C).
    19. Bertolini, Marina & D’Alpaos, Chiara & Moretto, Michele, 2016. "Investing in Photovoltaics: Timing, Plant Sizing and Smart Grids Flexibility," MITP: Mitigation, Innovation and Transformation Pathways 244540, Fondazione Eni Enrico Mattei (FEEM).
    20. Fernández-González, Raquel & Pérez-Vas, Raisa & Puime-Guillén, Félix, 2022. "Small companies facing the mobility policy in Spain: Is it profitable to remain in the market?," Transport Policy, Elsevier, vol. 128(C), pages 113-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6235-:d:1439814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.