IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p6200-d1439068.html
   My bibliography  Save this article

Complementarity of Sentinel-1 and Sentinel-2 Data for Soil Salinity Monitoring to Support Sustainable Agriculture Practices in the Central Bolivian Altiplano

Author

Listed:
  • J. W. Sirpa-Poma

    (ESPACE-DEV, Univ Montpellier, IRD, Univ Antilles, Univ Guyane, Univ Réunion, 34093 Montpellier, France
    Instituto de Hidráulica e Hidrología, Universidad Mayor de San Andrés, La Paz, Bolivia)

  • F. Satgé

    (ESPACE-DEV, Univ Montpellier, IRD, Univ Antilles, Univ Guyane, Univ Réunion, 34093 Montpellier, France
    Instituto de Hidráulica e Hidrología, Universidad Mayor de San Andrés, La Paz, Bolivia)

  • R. Pillco Zolá

    (Instituto de Hidráulica e Hidrología, Universidad Mayor de San Andrés, La Paz, Bolivia)

  • E. Resongles

    (HSM, CNRS, IRD, Univ Montpellier, 34093 Montpellier, France
    Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, La Paz, Bolivia)

  • M. Perez-Flores

    (ESPACE-DEV, Univ Montpellier, IRD, Univ Antilles, Univ Guyane, Univ Réunion, 34093 Montpellier, France)

  • M. G. Flores Colque

    (Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, La Paz, Bolivia)

  • J. Molina-Carpio

    (Instituto de Hidráulica e Hidrología, Universidad Mayor de San Andrés, La Paz, Bolivia)

  • O. Ramos

    (Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, La Paz, Bolivia)

  • M.-P. Bonnet

    (ESPACE-DEV, Univ Montpellier, IRD, Univ Antilles, Univ Guyane, Univ Réunion, 34093 Montpellier, France)

Abstract

Soil salinization will affect 50% of global cropland areas by 2050 and represents a major threat to agricultural production and food sovereignty. As soil salinity monitoring is costly and time consuming, many regions of the world undertake very limited soil salinity observation (in space and time), preventing the accurate assessment of soil salinity hazards. In this context, this study assesses the relative performance of Sentinel-1 radar and Sentinel-2 optical images, and the combination of the two, for monitoring changes in soil salinity at high spatial and temporal resolution, which is essential to evaluate the mitigation measures required for the sustainable adaptation of agriculture practices. For this purpose, an improved learning database made of 863 soil electrical conductivity (i.e., soil salinity) observations is considered for the training/validation step of a Random Forest (RF) model. The RF model is successively trained with (1) only Sentinel-1, (2) only Sentinel-2 and (3) both Sentinel-1 and -2 features using the Genetic Algorithm (GA) to reduce multi-collinearity in the independent variables. Using k-fold cross validation (3-fold), overall accuracy (OA) values of 0.83, 0.88 and 0.95 are obtained when considering only Sentinel-2, only Sentinel-1 and both Sentinel-1 and -2 features as independent variables. Therefore, these results highlight the clear complementarity of radar (i.e., Sentinel-1) and optical (i.e., Sentinel-2) images to improve soil salinity mapping, with OA increases of approximately 10% and 7% when compared to Sentinel-2 and Sentinel-1 alone. Finally, pre-sowing soil salinity maps over a five-year period (2019–2023) are presented to highlight the benefit of the proposed procedure to support the sustainable management of agricultural lands in the context of soil salinization on a regional scale.

Suggested Citation

  • J. W. Sirpa-Poma & F. Satgé & R. Pillco Zolá & E. Resongles & M. Perez-Flores & M. G. Flores Colque & J. Molina-Carpio & O. Ramos & M.-P. Bonnet, 2024. "Complementarity of Sentinel-1 and Sentinel-2 Data for Soil Salinity Monitoring to Support Sustainable Agriculture Practices in the Central Bolivian Altiplano," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6200-:d:1439068
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/6200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/6200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    2. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    3. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    4. Wen, Yeqiang & Shang, Songhao & Rahman, Khalil Ur & Xia, Yuhong & Ren, Dongyang, 2020. "A semi-distributed drainage model for monthly drainage water and salinity simulation in a large irrigation district in arid region," Agricultural Water Management, Elsevier, vol. 230(C).
    5. Turner, Benjamin L. & Kodali, Srinadh, 2020. "Soil system dynamics for learning about complex, feedback-driven agricultural resource problems: model development, evaluation, and sensitivity analysis of biophysical feedbacks," Ecological Modelling, Elsevier, vol. 428(C).
    6. Masoud Pourgholam-Amiji & Abdolmajid Liaghat & Arezoo Ghameshlou & Mojtaba Khoshravesh & Muhammad Mohsin Waqas, 2020. "Investigation Of The Yield And Yield Components Of Rice In Shallow Water Table And Saline," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(1), pages 36-40, August.
    7. Bin Yang & Ying Wang & Yan Li & Lizi Mo, 2023. "Empirical Investigation of Cultivated Land Green Use Efficiency and Influencing Factors in China, 2000–2020," Land, MDPI, vol. 12(8), pages 1-17, August.
    8. Matthew Scott Jansing & Faezeh Mahichi & Ranahansa Dasanayake, 2020. "Sustainable Irrigation Management in Paddy Rice Agriculture: A Comparative Case Study of Karangasem Indonesia and Kunisaki Japan," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    9. Yuhui Yang & Dongwei Li & Weixiong Huang & Xinguo Zhou & Zhaoyang Li & Xiaomei Dong & Xingpeng Wang, 2022. "Effects of Subsurface Drainage on Soil Salinity and Groundwater Table in Drip Irrigated Cotton Fields in Oasis Regions of Tarim Basin," Agriculture, MDPI, vol. 12(12), pages 1-14, December.
    10. Muhammad Afnan Talib & Zhonghua Tang & Asfandyar Shahab & Jamil Siddique & Muhammad Faheem & Mehak Fatima, 2019. "Hydrogeochemical Characterization and Suitability Assessment of Groundwater: A Case Study in Central Sindh, Pakistan," IJERPH, MDPI, vol. 16(5), pages 1-21, March.
    11. Darzi-Naftchali, Abdullah & Ritzema, Henk & Karandish, Fatemeh & Mokhtassi-Bidgoli, Ali & Ghasemi-Nasr, Mohammad, 2017. "Alternate wetting and drying for different subsurface drainage systems to improve paddy yield and water productivity in Iran," Agricultural Water Management, Elsevier, vol. 193(C), pages 221-231.
    12. Devkota, Krishna Prasad & Devkota, Mina & Rezaei, Meisam & Oosterbaan, Roland, 2022. "Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands," Agricultural Systems, Elsevier, vol. 198(C).
    13. Liu, Yi & Hu, Yue & Wei, Chenchen & Zeng, Wenzhi & Huang, Jiesheng & Ao, Chang, 2024. "Synergistic regulation of irrigation and drainage based on crop salt tolerance and leaching threshold," Agricultural Water Management, Elsevier, vol. 292(C).
    14. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    15. Tavakoli Kivi, Saman & Bailey, Ryan T., 2017. "Modeling sulfur cycling and sulfate reactive transport in an agricultural groundwater system," Agricultural Water Management, Elsevier, vol. 185(C), pages 78-92.
    16. Manzoor Qadir, 2016. "Policy Note: Reversing Salt-Induced Land Degradation Requires Integrated Measures," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-8, March.
    17. Azamat Suleymanov & Ilyusya Gabbasova & Mikhail Komissarov & Ruslan Suleymanov & Timur Garipov & Iren Tuktarova & Larisa Belan, 2023. "Random Forest Modeling of Soil Properties in Saline Semi-Arid Areas," Agriculture, MDPI, vol. 13(5), pages 1-11, April.
    18. Barnard, Johannes Hendrikus & Matthews, Nicolette & du Preez, Christiaan Cornelius, 2021. "Formulating and assessing best water and salt management practices: Lessons from non-saline and water-logged irrigated fields," Agricultural Water Management, Elsevier, vol. 247(C).
    19. Aein, Reza & Alizadeh, Hosein, 2021. "Integrated hydro-economic modeling for optimal design of development scheme of salinity affected irrigated agriculture in Helleh River Basin," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Yahyaoui, Imene & Tadeo, Fernando & Segatto, Marcello Vieira, 2017. "Energy and water management for drip-irrigation of tomatoes in a semi- arid district," Agricultural Water Management, Elsevier, vol. 183(C), pages 4-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6200-:d:1439068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.