IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v185y2017icp78-92.html
   My bibliography  Save this article

Modeling sulfur cycling and sulfate reactive transport in an agricultural groundwater system

Author

Listed:
  • Tavakoli Kivi, Saman
  • Bailey, Ryan T.

Abstract

Many irrigated agricultural areas worldwide suffer from salinization of soil, groundwater, and nearby river systems. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreased crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, where saline river water is diverted for application on irrigated fields. This paper presents a physically-based, spatially-distributed groundwater reactive transport model that simulates the fate and transport of sulfate, the principal salt ion in many salt-affected watersheds, in an agricultural groundwater system. The model, developed from the UZF-RT3D model that simulates chemical species transport in variably-saturated subsurface systems, accounts for sulfur cycling (crop uptake, organic matter decomposition, mineralization/immobilization) in the soil-plant system, oxidation-reduction reactions, including the oxidation of residual Sulfur in marine shale, and also the effect of dissolved oxygen and nitrate on sulfate chemical reduction. The model is tested at the small scale (i.e. soil profile) and at the regional scale (500km2) in the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. Results demonstrate that although the major sulfate reactive transport processes are accounted for, the model consistently under-predicts measured soil and groundwater sulfate concentrations, pointing to the need for a comprehensive salinity module that accounts not only for advection, dispersion, sulfur cycling, and oxidation-reduction, but also salt ion equilibrium chemistry that includes the dissolution and precipitation of salt minerals in the soil-aquifer system. However, the model can be a useful tool to assess sulfate fate and transport in areas that are not dominated by salt mineral precipitation and dissolution.

Suggested Citation

  • Tavakoli Kivi, Saman & Bailey, Ryan T., 2017. "Modeling sulfur cycling and sulfate reactive transport in an agricultural groundwater system," Agricultural Water Management, Elsevier, vol. 185(C), pages 78-92.
  • Handle: RePEc:eee:agiwat:v:185:y:2017:i:c:p:78-92
    DOI: 10.1016/j.agwat.2017.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417300434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    2. Hutmacher, R. B. & Ayars, J. E. & Vail, S. S. & Bravo, A. D. & Dettinger, D. & Schoneman, R. A., 1996. "Uptake of shallow groundwater by cotton: growth stage, groundwater salinity effects in column lysimeters," Agricultural Water Management, Elsevier, vol. 31(3), pages 205-223, October.
    3. Ayars, J.E. & Christen, E.W. & Hornbuckle, J.W., 2006. "Controlled drainage for improved water management in arid regions irrigated agriculture," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 128-139, November.
    4. Hornbuckle, J.W. & Christen, E.W. & Faulkner, R.D., 2007. "Evaluating a multi-level subsurface drainage system for improved drainage water quality," Agricultural Water Management, Elsevier, vol. 89(3), pages 208-216, May.
    5. Konukcu, F. & Gowing, J.W. & Rose, D.A., 2006. "Dry drainage: A sustainable solution to waterlogging and salinity problems in irrigation areas?," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 1-12, May.
    6. Gowing, J.W. & Rose, D.A. & Ghamarnia, H., 2009. "The effect of salinity on water productivity of wheat under deficit irrigation above shallow groundwater," Agricultural Water Management, Elsevier, vol. 96(3), pages 517-524, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    2. Gowing, J.W. & Rose, D.A. & Ghamarnia, H., 2009. "The effect of salinity on water productivity of wheat under deficit irrigation above shallow groundwater," Agricultural Water Management, Elsevier, vol. 96(3), pages 517-524, March.
    3. Ghamarnia, Houshang & Khodaei, Erfan, 2016. "Evidence on shallow groundwater use by edible green vegetables such as Solanum pseudoca psicum, Ocimum basilicum and Lepidium sativum in a semi-arid climate condition," Agricultural Water Management, Elsevier, vol. 165(C), pages 198-210.
    4. Ghamarnia, Houshang & Jalili, Zahra, 2014. "Shallow saline groundwater use by Black cumin (Nigella sativa L.) in the presence of surface water in a semi-arid region," Agricultural Water Management, Elsevier, vol. 132(C), pages 89-100.
    5. Ayars, James E. & Shouse, Peter & Lesch, Scott M., 2009. "In situ use of groundwater by alfalfa," Agricultural Water Management, Elsevier, vol. 96(11), pages 1579-1586, November.
    6. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.
    7. Thomas Spencer & Tihomir Ancev & Jeff Connor, 2009. "Improving Cost Effectiveness of Irrigation Zoning for Salinity Mitigation by Introducing Offsets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2085-2100, August.
    8. Benedykt Pepliński & Wawrzyniec Czubak, 2021. "The Influence of Opencast Lignite Mining Dehydration on Plant Production—A Methodological Study," Energies, MDPI, vol. 14(7), pages 1-29, March.
    9. Vandersypen, K. & Keita, A.C.T. & Coulibaly, B. & Raes, D. & Jamin, J.-Y., 2007. "Drainage problems in the rice schemes of the Office du Niger (Mali) in relation to water management," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 153-160, April.
    10. Abdullah Darzi-Naftchali & Henk Ritzema, 2018. "Integrating Irrigation and Drainage Management to Sustain Agriculture in Northern Iran," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    11. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    12. Ajay Singh & Sudhindra Panda, 2013. "Optimization and Simulation Modelling for Managing the Problems of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3421-3431, July.
    13. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    14. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    15. Negm, L.M. & Youssef, M.A. & Chescheir, G.M. & Skaggs, R.W., 2016. "DRAINMOD-based tools for quantifying reductions in annual drainage flow and nitrate losses resulting from drainage water management on croplands in eastern North Carolina," Agricultural Water Management, Elsevier, vol. 166(C), pages 86-100.
    16. Shouse, P.J. & Goldberg, S. & Skaggs, T.H. & Soppe, R.W.O. & Ayars, J.E., 2010. "Changes in spatial and temporal variability of SAR affected by shallow groundwater management of an irrigated field, California," Agricultural Water Management, Elsevier, vol. 97(5), pages 673-680, May.
    17. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.
    18. Chowdary, V.M. & Chandran, R. Vinu & Neeti, N. & Bothale, R.V. & Srivastava, Y.K. & Ingle, P. & Ramakrishnan, D. & Dutta, D. & Jeyaram, A. & Sharma, J.R. & Singh, Ravindra, 2008. "Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS," Agricultural Water Management, Elsevier, vol. 95(7), pages 754-766, July.
    19. Turunen, M. & Warsta, L. & Paasonen-Kivekäs, M. & Nurminen, J. & Myllys, M. & Alakukku, L. & Äijö, H. & Puustinen, M. & Koivusalo, H., 2013. "Modeling water balance and effects of different subsurface drainage methods on water outflow components in a clayey agricultural field in boreal conditions," Agricultural Water Management, Elsevier, vol. 121(C), pages 135-148.
    20. Fazlullah Akhtar & Bernhard Tischbein & Usman Awan, 2013. "Optimizing Deficit Irrigation Scheduling Under Shallow Groundwater Conditions in Lower Reaches of Amu Darya River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3165-3178, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:185:y:2017:i:c:p:78-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.