IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p5985-d1434322.html
   My bibliography  Save this article

Bringing Back Reef Fish: Sustainable Impacts of Community-Based Restoration of Elkhorn Coral ( Acropora palmata ) in Vega Baja, Puerto Rico (2008–2023)

Author

Listed:
  • Edwin A. Hernández-Delgado

    (Sociedad Ambiente Marino, San Juan 00931, Puerto Rico
    Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, San Juan 00925, Puerto Rico
    Interdisciplinary Studies Program, Faculty of Natural Sciences, University of Puerto Rico, San Juan 00925, Puerto Rico)

  • Ricardo Laureano

    (Grupo VIDAS, Vega Baja 00693, Puerto Rico)

Abstract

In response to the severe fragmentation of Elkhorn coral, Acropora palmata (Lamarck, 1816), stands caused by a major winter swell (“Holy Swell”) in March 2008, an emergency community-based low-tech restoration was initiated in Vega Baja, Puerto Rico. Over a 15-year period, coral demographic performance and fish assemblages were monitored across four restored and four control (non-restored) 100 m 2 plots. The restoration effort proved to be highly successful, leading to successful coral survival and growth, and to sustained recovery of fish assemblages, particularly herbivore guilds. Significantly increased abundance, biomass, and diversity were observed across all trophic functional groups, fishery target species, and geo-ecological functional groups in both restored and control plots. These positive outcomes were attributed to enhanced spatial complexity by long-term coral growth, “nutrient hotspots” within restored plots, the refugia effect from enhanced benthic spatial complexity, and the recovery of fish dispersal paths promoting spillover effects from restored to adjacent non-restored areas. Restoring herbivore guilds and geo-ecological functional groups played a crucial role in restoring vital ecological processes promoting reef ecosystem resilience. Recommendations include integrating fish assemblage recovery into coral restoration strategies, establishing natural coral nursery plots for future coral sourcing, and incorporating the concept of nursery seascapes for a holistic and ecosystem-based approach to restoration.

Suggested Citation

  • Edwin A. Hernández-Delgado & Ricardo Laureano, 2024. "Bringing Back Reef Fish: Sustainable Impacts of Community-Based Restoration of Elkhorn Coral ( Acropora palmata ) in Vega Baja, Puerto Rico (2008–2023)," Sustainability, MDPI, vol. 16(14), pages 1-41, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5985-:d:1434322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/5985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/5985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timothy A. C. Gordon & Andrew N. Radford & Isla K. Davidson & Kasey Barnes & Kieran McCloskey & Sophie L. Nedelec & Mark G. Meekan & Mark I. McCormick & Stephen D. Simpson, 2019. "Acoustic enrichment can enhance fish community development on degraded coral reef habitat," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Chris T. Perry & Lorenzo Alvarez-Filip & Nicholas A. J. Graham & Peter J. Mumby & Shaun K. Wilson & Paul S. Kench & Derek P. Manzello & Kyle M. Morgan & Aimee B. A. Slangen & Damian P. Thomson & Frase, 2018. "Loss of coral reef growth capacity to track future increases in sea level," Nature, Nature, vol. 558(7710), pages 396-400, June.
    3. D. R. Bellwood & T. P. Hughes & C. Folke & M. Nyström, 2004. "Confronting the coral reef crisis," Nature, Nature, vol. 429(6994), pages 827-833, June.
    4. Mir Mousavi & Jennifer Irish & Ashley Frey & Francisco Olivera & Billy Edge, 2011. "Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding," Climatic Change, Springer, vol. 104(3), pages 575-597, February.
    5. Ning Lin & Kerry Emanuel & Michael Oppenheimer & Erik Vanmarcke, 2012. "Physically based assessment of hurricane surge threat under climate change," Nature Climate Change, Nature, vol. 2(6), pages 462-467, June.
    6. M. Aaron MacNeil & Nicholas A. J. Graham & Joshua E. Cinner & Shaun K. Wilson & Ivor D. Williams & Joseph Maina & Steven Newman & Alan M. Friedlander & Stacy Jupiter & Nicholas V. C. Polunin & Tim R. , 2015. "Recovery potential of the world's coral reef fishes," Nature, Nature, vol. 520(7547), pages 341-344, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsvetan Tsvetanov & Farhed Shah, 2013. "The economic value of delaying adaptation to sea-level rise: An application to coastal properties in Connecticut," Climatic Change, Springer, vol. 121(2), pages 177-193, November.
    2. Qian Ke & Jiangshan Yin & Jeremy D. Bricker & Nicholas Savage & Erasmo Buonomo & Qinghua Ye & Paul Visser & Guangtao Dong & Shuai Wang & Zhan Tian & Laixiang Sun & Ralf Toumi & Sebastiaan N. Jonkman, 2021. "An integrated framework of coastal flood modelling under the failures of sea dikes: a case study in Shanghai," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 671-703, October.
    3. Lee, Ji Yun & Ellingwood, Bruce R., 2017. "A decision model for intergenerational life-cycle risk assessment of civil infrastructure exposed to hurricanes under climate change," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 100-107.
    4. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    5. Jennifer Irish & Alison Sleath & Mary Cialone & Thomas Knutson & Robert Jensen, 2014. "Simulations of Hurricane Katrina (2005) under sea level and climate conditions for 1900," Climatic Change, Springer, vol. 122(4), pages 635-649, February.
    6. Keqi Zhang & Yuepeng Li & Huiqing Liu & Hongzhou Xu & Jian Shen, 2013. "Comparison of three methods for estimating the sea level rise effect on storm surge flooding," Climatic Change, Springer, vol. 118(2), pages 487-500, May.
    7. Nick Taylor & Jennifer Irish & Ikpoto Udoh & Matthew Bilskie & Scott Hagen, 2015. "Development and uncertainty quantification of hurricane surge response functions for hazard assessment in coastal bays," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1103-1123, June.
    8. Karthik Balaguru & David R. Judi & L. Ruby Leung, 2016. "Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity," Climatic Change, Springer, vol. 138(1), pages 99-110, September.
    9. Teh, Louise S.L. & Teh, Lydia C.L. & Rashid Sumaila, U., 2014. "Time preference of small-scale fishers in open access and traditionally managed reef fisheries," Marine Policy, Elsevier, vol. 44(C), pages 222-231.
    10. Yu-Rong Cheng & Chi-Hsiang Chin & Ding-Fa Lin & Chao-Kang Wang, 2020. "The Probability of an Unrecoverable Coral Community in Dongsha Atoll Marine National Park Due to Recurrent Disturbances," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    11. Yuki Miura & Huda Qureshi & Chanyang Ryoo & Philip C. Dinenis & Jiao Li & Kyle T. Mandli & George Deodatis & Daniel Bienstock & Heather Lazrus & Rebecca Morss, 2021. "A methodological framework for determining an optimal coastal protection strategy against storm surges and sea level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1821-1843, June.
    12. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    13. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    14. Conrad W Speed & Russ C Babcock & Kevin P Bancroft & Lynnath E Beckley & Lynda M Bellchambers & Martial Depczynski & Stuart N Field & Kim J Friedman & James P Gilmour & Jean-Paul A Hobbs & Halina T Ko, 2013. "Dynamic Stability of Coral Reefs on the West Australian Coast," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    15. Ahmad Taki & Viet Ha Xuan Doan, 2022. "A New Framework for Sustainable Resilient Houses on the Coastal Areas of Khanh Hoa, Vietnam," Sustainability, MDPI, vol. 14(13), pages 1-31, June.
    16. Wamukota, A. & Brewer, T.D. & Crona, B., 2014. "Market integration and its relation to income distribution and inequality among fishers and traders: The case of two small-scale Kenyan reef fisheries," Marine Policy, Elsevier, vol. 48(C), pages 93-101.
    17. Byungdoo Kim & David L. Kay & Jonathon P. Schuldt, 2021. "Will I have to move because of climate change? Perceived likelihood of weather- or climate-related relocation among the US public," Climatic Change, Springer, vol. 165(1), pages 1-8, March.
    18. Meri Davlasheridze & Qin Fan & Wesley Highfield & Jiaochen Liang, 2021. "Economic impacts of storm surge events: examining state and national ripple effects," Climatic Change, Springer, vol. 166(1), pages 1-20, May.
    19. Reiji Masuda, 2020. "Tropical fishes vanished after the operation of a nuclear power plant was suspended in the Sea of Japan," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-13, May.
    20. Christine Bergman & Rochelle Good & Andrew Moreo, 2022. "Influencing Hotel Patrons to Use Reef-Safe Sunscreen," Tourism and Hospitality, MDPI, vol. 3(3), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5985-:d:1434322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.