IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p5979-d1434218.html
   My bibliography  Save this article

Travel Characteristics and Vulnerability Analysis of Road Resource Utilization Based on Taxi GPS Data

Author

Listed:
  • Wei Zhang

    (School of Architecture, Tianjin University, Tianjin 300072, China
    ZJU-STEC Urban Development and Planning Innovation Joint Research Center, Zhejiang University, Hangzhou 310058, China)

  • Duanqiang Zhai

    (Tongji University, Shanghai 200092, China)

  • Ziqi Wang

    (School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China)

Abstract

Residents’ travel and logistics are greatly affected by urban transportation networks, which are one of the most important supports for urban socio-economic activities. Urban transportation systems tend to cripple when faced with challenges such as natural hazards and social unrest. This paper proposes a framework for a vulnerability analysis of urban road networks (URNs) based on real traffic flows with GPS data. An improved K-shell critical node identification method is proposed based on structural and traffic characteristics. Then, a cascade failure model is proposed to analyze the structural and functional vulnerability of the URN by combining the load capacity model and the vulnerability model. This paper takes the Harbin main city URN as an example and first analyzes the passenger travel distribution and the relationship between travel orders, population and POI. Four deliberate attack methods are proposed to analyze the vulnerability of the URN under deliberate attack on commute days and rest days. The experimental results show that URNs exhibit intense vulnerability, with the fastest cascading failure occurring based on improved K-shell node failure. Furthermore, URNs are more vulnerable on rest days compared to commuter days. These findings could be used to inform a vulnerability-based spatiotemporal design of UBNs and provide theoretical support for managing traffic congestion on different days.

Suggested Citation

  • Wei Zhang & Duanqiang Zhai & Ziqi Wang, 2024. "Travel Characteristics and Vulnerability Analysis of Road Resource Utilization Based on Taxi GPS Data," Sustainability, MDPI, vol. 16(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5979-:d:1434218
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/5979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/5979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Qing-Chang & Xu, Peng-Cheng & Zhang, Jingxiao, 2021. "Infrastructure-based transportation network vulnerability modeling and analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    2. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    3. Tang, Jinjun & Liu, Fang & Wang, Yinhai & Wang, Hua, 2015. "Uncovering urban human mobility from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 140-153.
    4. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    5. Zhang, Jianhua & Wang, Meng, 2019. "Transportation functionality vulnerability of urban rail transit networks based on movingblock: The case of Nanjing metro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    7. Sohn, Jungyul, 2006. "Evaluating the significance of highway network links under the flood damage: An accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 491-506, July.
    8. (Sean) Qian, Zhen & Li, Jia & Li, Xiaopeng & Zhang, Michael & Wang, Haizhong, 2017. "Modeling heterogeneous traffic flow: A pragmatic approach," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 183-204.
    9. Gao, Lei & Liu, Xingquan & Liu, Yu & Wang, Pu & Deng, Min & Zhu, Qing & Li, Haifeng, 2019. "Measuring road network topology vulnerability by Ricci curvature," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    10. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ziqi & Pei, Yulong & Liu, Jing & Liu, Hehang, 2023. "Vulnerability analysis of urban road networks based on traffic situation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 41(C).
    2. Wang, Shuliang & Chen, Chen & Zhang, Jianhua & Gu, Xifeng & Huang, Xiaodi, 2022. "Vulnerability assessment of urban road traffic systems based on traffic flow," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    3. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    4. Lu, Qing-Chang & Xu, Peng-Cheng & Zhang, Jingxiao, 2021. "Infrastructure-based transportation network vulnerability modeling and analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    5. Zhang, Jianhua & Shao, Wenchao & Yang, Liqiang & Zhao, Xun & Liu, Weizhi, 2023. "Robustness assessments of urban rail transit networks based on user equilibrium with time compensation mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    6. Jenelius, Erik, 2010. "User inequity implications of road network vulnerability," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(3), pages 57-73.
    7. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    8. Rolf Nyberg & Magnus Johansson, 2013. "Indicators of road network vulnerability to storm-felled trees," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 185-199, October.
    9. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    10. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    11. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    12. Yu Miao & Anning Ni, 2019. "Vulnerability Analysis of Intercity Multimode Transportation Networks; A Case Study of the Yangtze River Delta," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    13. Nogal, Maria & Morales Nápoles, Oswaldo & O’Connor, Alan, 2019. "Structured expert judgement to understand the intrinsic vulnerability of traffic networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 136-152.
    14. Zhitao Li & Xiaolu Wang & Fan Gao & Jinjun Tang & Hanmeng Xu, 2024. "Analysis of mobility patterns for urban taxi ridership: the role of the built environment," Transportation, Springer, vol. 51(4), pages 1409-1431, August.
    15. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    16. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    17. Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Tang, Jinjun & Zhang, Shen & Zhang, Wenhui & Liu, Fang & Zhang, Weibin & Wang, Yinhai, 2016. "Statistical properties of urban mobility from location-based travel networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 694-707.
    19. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5979-:d:1434218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.