IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p5964-d1434088.html
   My bibliography  Save this article

Application of a Multi-Model Fusion Forecasting Approach in Runoff Prediction: A Case Study of the Yangtze River Source Region

Author

Listed:
  • Tingqi Wang

    (Institute of Ecology, People’s Friendship University of Russia, 115093 Moscow, Russia)

  • Yuting Guo

    (Institute of Ecology, People’s Friendship University of Russia, 115093 Moscow, Russia)

  • Mazina Svetlana Evgenievna

    (Institute of Ecology, People’s Friendship University of Russia, 115093 Moscow, Russia)

  • Zhenjiang Wu

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

Abstract

Runoff forecasting is crucial for sustainable water resource management. Despite the widespread application of deep learning methods in this field, there is still a need for improvement in the modeling and utilization of multi-scale information. For the first time, we introduce the Neural Basis Expansion Analysis with Exogenous Variable (NBEATSx) model to perform runoff prediction for a full exploration in rich temporal characteristics of runoff sequences. To harness wavelet transform (WT) multi-scale information capabilities, we developed the WT-NBEATSx forecasting model, integrating WT and NBEATSx. This model was further enhanced by incorporating a Long Short-Term Memory (LSTM) model for superior long-term dependency detection and a Random Forest (RF) model as a meta-model. The result is the advanced multi-model fusion forecasting model WT-NBEATSx-LSTM-RF (WNLR). This approach significantly enhances performance in runoff prediction. Utilizing a daily scale runoff and meteorological dataset from the Yangtze River Source region in China from 2006 to 2018, we systematically evaluated the performance of the WNLR model in runoff prediction tasks. Compared with LSTM, Gated Recurrent Units (GRUs), and NBEATSx models, the WNLR model not only significantly outperforms the original NBEATSx model but also surpasses other comparison models, particularly in accurately extracting cyclical change patterns, with NSE scores of 0.986, 0.974, and 0.973 for 5-, 10-, and 15-day forecasts, respectively. Additionally, compared to the standalone LSTM and GRU models, the introduction of wavelet transforms to form WT-LSTM and WT-GRU notably improved prediction performance and robustness, especially in long-term forecasts, where NSE increased by 32% and 1.5%, respectively. This study preliminarily proves the effectiveness of combining the cyclical characteristics of NBEATSx and wavelet transforms and creatively proposes a new deep learning model integrating LSTM and RF, providing new insights for further considering multi-scale features of complex runoff time series, thereby enhancing runoff prediction effectiveness.

Suggested Citation

  • Tingqi Wang & Yuting Guo & Mazina Svetlana Evgenievna & Zhenjiang Wu, 2024. "Application of a Multi-Model Fusion Forecasting Approach in Runoff Prediction: A Case Study of the Yangtze River Source Region," Sustainability, MDPI, vol. 16(14), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5964-:d:1434088
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/5964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/5964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. Nagesh Kumar & K. Srinivasa Raju & T. Sathish, 2004. "River Flow Forecasting using Recurrent Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(2), pages 143-161, April.
    2. Mouatadid, Soukayna & Adamowski, Jan F. & Tiwari, Mukesh K. & Quilty, John M., 2019. "Coupling the maximum overlap discrete wavelet transform and long short-term memory networks for irrigation flow forecasting," Agricultural Water Management, Elsevier, vol. 219(C), pages 72-85.
    3. He, Qingqing & Wang, Jianzhou & Lu, Haiyan, 2018. "A hybrid system for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 226(C), pages 756-771.
    4. Huiqi Deng & Wenjie Chen & Guoru Huang, 2022. "Deep insight into daily runoff forecasting based on a CNN-LSTM model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1675-1696, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Diamantopoulou & Vassilis Antonopoulos & Dimitris Papamichail, 2007. "Cascade Correlation Artificial Neural Networks for Estimating Missing Monthly Values of Water Quality Parameters in Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 649-662, March.
    2. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    3. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    4. Pin-Chun Huang & Kuo-Lin Hsu & Kwan Tun Lee, 2021. "Improvement of Two-Dimensional Flow-Depth Prediction Based on Neural Network Models By Preprocessing Hydrological and Geomorphological Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1079-1100, February.
    5. Kostić, Srđan & Stojković, Milan & Prohaska, Stevan, 2016. "Hydrological flow rate estimation using artificial neural networks: Model development and potential applications," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 373-385.
    6. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    7. L. Karthikeyan & D. Kumar & Didier Graillot & Shishir Gaur, 2013. "Prediction of Ground Water Levels in the Uplands of a Tropical Coastal Riparian Wetland using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 871-883, February.
    8. Hu, Yue & Liu, Hanjing & Wu, Senzhen & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng, 2024. "Temporal collaborative attention for wind power forecasting," Applied Energy, Elsevier, vol. 357(C).
    9. Desalegn Edossa & Mukand Babel, 2011. "Application of ANN-Based Streamflow Forecasting Model for Agricultural Water Management in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1759-1773, April.
    10. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    11. Danxiang Wei & Jianzhou Wang & Kailai Ni & Guangyu Tang, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network Combined with Fuzzy Time Series for Energy Forecasting," Energies, MDPI, vol. 12(18), pages 1-38, September.
    12. Bibhuti Bhusan Sahoo & Sovan Sankalp & Ozgur Kisi, 2023. "A Novel Smoothing-Based Deep Learning Time-Series Approach for Daily Suspended Sediment Load Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4271-4292, September.
    13. Lei Zhang & Lun Xie & Qinkai Han & Zhiliang Wang & Chen Huang, 2020. "Probability Density Forecasting of Wind Speed Based on Quantile Regression and Kernel Density Estimation," Energies, MDPI, vol. 13(22), pages 1-24, November.
    14. Wang, Huaizhi & Xue, Wenli & Liu, Yitao & Peng, Jianchun & Jiang, Hui, 2020. "Probabilistic wind power forecasting based on spiking neural network," Energy, Elsevier, vol. 196(C).
    15. Georgia Papacharalampous & Hristos Tyralis & Demetris Koutsoyiannis, 2018. "Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5207-5239, December.
    16. Rita Teixeira & Adelaide Cerveira & Eduardo J. Solteiro Pires & José Baptista, 2024. "Advancing Renewable Energy Forecasting: A Comprehensive Review of Renewable Energy Forecasting Methods," Energies, MDPI, vol. 17(14), pages 1-30, July.
    17. Shivshanker Patel & Parthasarathy Ramachandran, 2015. "A Comparison of Machine Learning Techniques for Modeling River Flow Time Series: The Case of Upper Cauvery River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 589-602, January.
    18. Thiago Victor Medeiros Nascimento & Celso Augusto Guimarães Santos & Camilo Allyson Simões Farias & Richarde Marques Silva, 2022. "Monthly Streamflow Modeling Based on Self-Organizing Maps and Satellite-Estimated Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2359-2377, May.
    19. Qiang Zhang & Ben-De Wang & Bin He & Yong Peng & Ming-Lei Ren, 2011. "Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2683-2703, September.
    20. Veysel Güldal & Hakan Tongal, 2010. "Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 105-128, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5964-:d:1434088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.