IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5742-d1429506.html
   My bibliography  Save this article

Assessing the CO 2 Emissions and Energy Source Consumption Nexus in Japan

Author

Listed:
  • Kentaka Aruga

    (Graduate School of Humanities and Social Sciences, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan)

  • Md. Monirul Islam

    (Department of Agricultural Economics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
    Commonwealth Scientific and Industrial Research Organisation—CSIRO, Waite Campus, Adelaide 5064, Australia)

  • Arifa Jannat

    (Institute of Agribusiness and Development Studies, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh)

Abstract

This research investigates the variation in the impact of different energy sources on carbon dioxide (CO 2 ) emissions in Japan during the period from January 2019 to March 2023. The results of the Autoregressive Distributed Lag (ARDL) model suggest that a 1% increase in energy consumption produced through the photovoltaic (PV) decreases carbon emission by 0.053% in the short-run. Conversely, a 1% increase in coal, oil, and liquefied natural gas (LNG) leads to an increase in CO 2 emissions by 0.317%, 0.038%, and 0.214%, respectively. The study also reveals an inverted-U-shaped relationship between CO 2 emissions and economic growth, represented by the Nikkei stock index. The research emphasizes the critical need for Japan to prioritize investments and incentives in renewable energy technologies such as the PV systems, which have been demonstrated to effectively reduce CO 2 emissions in Japan. This is essential to uphold long-term ecological balance and to proactively support the ongoing reduction in CO 2 intensity, a key objective outlined in the Paris Agreement.

Suggested Citation

  • Kentaka Aruga & Md. Monirul Islam & Arifa Jannat, 2024. "Assessing the CO 2 Emissions and Energy Source Consumption Nexus in Japan," Sustainability, MDPI, vol. 16(13), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5742-:d:1429506
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5742/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5742/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Seun Damola Oladipupo & Ephraim Bonah Agyekum & Arunkumar Jayakumar & Nallapaneni Manoj Kumar, 2021. "Dominance of Fossil Fuels in Japan’s National Energy Mix and Implications for Environmental Sustainability," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    2. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    3. Breusch, T S, 1978. "Testing for Autocorrelation in Dynamic Linear Models," Australian Economic Papers, Wiley Blackwell, vol. 17(31), pages 334-355, December.
    4. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    5. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    6. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    7. Sbia, Rashid & Shahbaz, Muhammad & Hamdi, Helmi, 2014. "A contribution of foreign direct investment, clean energy, trade openness, carbon emissions and economic growth to energy demand in UAE," Economic Modelling, Elsevier, vol. 36(C), pages 191-197.
    8. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    9. Salari, Mahmoud & Javid, Roxana J. & Noghanibehambari, Hamid, 2021. "The nexus between CO2 emissions, energy consumption, and economic growth in the U.S," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 182-194.
    10. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    11. Lilis Yuaningsih & R. Adjeng Mariana Febrianti & Hafiz Waqas Kamran, 2020. "Reducing CO2 Emissions through Biogas, Wind and Solar Energy Production: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 684-689.
    12. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zamanipour, Behzad & Ghadaksaz, Hesam & Keppo, Ilkka & Saboohi, Yadollah, 2023. "Electricity supply and demand dynamics in Iran considering climate change-induced stresses," Energy, Elsevier, vol. 263(PE).
    2. Qin Fei & Rajah Rasiah & Leow Jia Shen, 2014. "The Clean Energy-Growth Nexus with CO2 Emissions and Technological Innovation in Norway and New Zealand," Energy & Environment, , vol. 25(8), pages 1323-1344, December.
    3. Ben Jebli, Mehdi & Ben Youssef, Slim, 2015. "The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 173-185.
    4. Siddhartha Pradeep, 2022. "Role of monetary policy on CO2 emissions in India," SN Business & Economics, Springer, vol. 2(1), pages 1-33, January.
    5. Roberto Martínez-Espiñeira, 2007. "An Estimation of Residential Water Demand Using Co-Integration and Error Correction Techniques," Journal of Applied Economics, Taylor & Francis Journals, vol. 10(1), pages 161-184, May.
    6. Ali, Wajahat & Abdullah, Azrai & Azam, Muhammad, 2017. "Re-visiting the environmental Kuznets curve hypothesis for Malaysia: Fresh evidence from ARDL bounds testing approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 990-1000.
    7. Chen, Huayi & Shi, Huai-Long & Zhou, Wei-Xing, 2024. "Carbon volatility connectedness and the role of external uncertainties: Evidence from China," Journal of Commodity Markets, Elsevier, vol. 33(C).
    8. Mohammad Razib Hossain, 2024. "Killing billions to save millions? Analyzing the double jeopardy of fossil-fuel-led economic development in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20679-20710, August.
    9. Onafowora, Olugbenga A. & Owoye, Oluwole, 2014. "Bounds testing approach to analysis of the environment Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 44(C), pages 47-62.
    10. Wang, Jun & Usman, Muhammad & Saqib, Najia & Shahbaz, Muhammad & Hossain, Mohammad Razib, 2023. "Asymmetric environmental performance under economic complexity, globalization and energy consumption: Evidence from the World's largest economically complex economy," Energy, Elsevier, vol. 279(C).
    11. Kentaka Aruga, 2021. "Changes in Human Mobility under the COVID-19 Pandemic and the Tokyo Fuel Market," JRFM, MDPI, vol. 14(4), pages 1-12, April.
    12. Kanjilal, Kakali & Ghosh, Sajal, 2013. "Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks," Energy Policy, Elsevier, vol. 56(C), pages 509-515.
    13. Samargandi, Nahla, 2017. "Sector value addition, technology and CO2 emissions in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 868-877.
    14. Muhammad Shahbaz & Amatul Razzaq Chaudhary & Syed Jawad Hussain Shahzad, 2020. "Is energy consumption sensitive to foreign capital inflows and currency devaluation in Pakistan?," Applied Economics, Taylor & Francis Journals, vol. 50(52), pages 5641-5658, June.
    15. Addison-Smyth, Diarmaid & McQuinn, Kieran & O'Reilly, Gerard, 2009. "Modelling Credit in the Irish Mortgage Market," The Economic and Social Review, Economic and Social Studies, vol. 40(4), pages 371-392.
    16. Shahzad, Syed Jawad Hussain & Kumar, Ronald Ravinesh & Zakaria, Muhammad & Hurr, Maryam, 2017. "Carbon emission, energy consumption, trade openness and financial development in Pakistan: A revisit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 185-192.
    17. Jeff Gow & Saidatus Saba, 2024. "Impact of Energy Usage, Economic Growth and Structural Industry Changes on Carbon Emissions in Bangladesh," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 267-276, March.
    18. Le Hoang Phong & Dang Thi Bach Van & Ho Hoang Gia Bao, 2018. "The Role of Globalization on CO2 Emission in Vietnam Incorporating Industrialization, Urbanization, GDP per Capita and Energy Use," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 275-283.
    19. Sanati, Youssef, 2019. "Der Wirtschaftsstandort Iran zwischen Förderung und Sanktion: Eine ARDL-modellbasierte Analyse ausländischer Investitionen," Arbeitspapiere 186, University of Münster, Institute for Cooperatives.
    20. Edmond Noubissi Domguia & Henri Njangang Ndieupa, 2017. "Croissance économique et dégradation de l'environnement au Cameroun," African Development Review, African Development Bank, vol. 29(4), pages 615-629, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5742-:d:1429506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.